
Incorporating Network RAM and Flash into Fast
Backing Store for Clusters

Tia Newhall and Douglas Woos

Computer Science Department
Swarthmore College

Swarthmore, PA 19081, USA
{newhall,dwoos1}@cs.swarthmore.edu

Abstract—We present Nswap2L, a fast backing storage system
for general purpose clusters. Nswap2L implements a single
device interface on top of multiple heterogeneous physical storage
devices, particularly targeting fast random access devices such as
Network RAM and flash SSDs. A key design feature of Nswap2L
is the separation of the interface from the underlying physical
storage; data that are read and written to our “device” are
managed by our underlying system and may be stored in local
RAM, remote RAM, flash, local disk or any other cluster-wide
storage. Nswap2L chooses which physical device will store data
based on cluster resource usage and the characteristics of various
storage media. In addition, it migrates data from one physical
device to another in response to changes in capacity and to
take advantage of the strengths of different types of physical
media, such as fast writes over the network and fast reads from
flash. Performance results of our prototype implementation of
Nswap2L added as a swap device on a 12 node Linux cluster
show speed-ups of over 30 times versus swapping to disk and over
1.7 times versus swapping to flash. In addition, we show that for
parallel benchmarks, Nswap2L using Network RAM and a flash
device that is slower than Network RAM can perform better
than Network RAM alone.

I. INTRODUCTION

“Science has entered a data-intensive era, driven by a deluge
of data being generated by digitally based instruments, sensor
networks, and simulation devices.” 1 As a result, designing
systems that efficiently support data-intensive computing is
increasingly important. As the disparity between the speeds
of magnetic disk and other hardware such as RAM, inter-
connection networks, and flash continues to grow, the cost
of accessing disk will increasingly become the bottleneck to
system performance. It is almost certain that this disparity will
eventually make magnetic disk obsolete. In the meantime, it
will be increasingly important to develop systems that can
avoid using disk as much as possible and can make the best
use of emerging fast storage technologies in clusters. It is also
likely that cluster storage will be more heterogeneous in the
future; at the very least, Network RAM will continue to rival
solid state drives. In addition, swap and local temporary file
system storage may not be managed entirely by the OS running
on individual cluster nodes, particularly as network-shared
storage and Network RAM become more common. Replacing

1Michael Norman, Interim Director of SDSC from “SDCS to Host ‘Grand
Challenges in Data-Intensive Discovery’ Conference”, HPCwire, August 3,
2010.

magnetic disk with a heterogeneous set of fast, random access
storage devices will require changes to OS subsystems that are
designed assuming that swap and local temporary file data are
stored on local disk and that this storage is managed solely
by the OS running on individual cluster nodes.

In general purpose clusters (clusters that support multiple
users and run a wide range of program workloads), resource
utilization varies due to dynamic workloads. Because resource
scheduling is difficult in this environment, there will often be
imbalances in resource utilization across cluster nodes. For
example, some nodes may have idle RAM while others have
over-committed RAM, resulting in swapping. The idle RAM
space on some nodes can be used by a Network RAM system
to improve the performance of applications running on the
cluster. Network RAM allows individual cluster nodes with
over-committed memory to swap their pages over the network
and store them in the idle RAM of other nodes.

Data intensive applications running on general purpose
clusters, such as parallel scientific or multimedia applications,
often perform large amounts of I/O either indirectly due to
swapping or directly due to temporary file accesses. If swap
and temporary file system data can be stored in Network RAM
or solid state storage, these applications will run much faster
than when swap and temporary file system data are stored on
magnetic disk.

Nswap2L is an extension of Nswap, our Network RAM
system for Linux clusters. Nswap2L is a scalable, adaptable
system that is a solution to the problem of supporting a het-
erogeneous set of backing storage devices in general purpose
cluster systems, some of which may have changing storage
capacities (Network RAM) and some of which may not be
completely under the control of the local OS (Network RAM
and other shared network storage.)

Nswap2L implements a novel two-level device design. At
the top level is a simple interface presented to cluster operating
systems and user-level programs. The top level manages the set
of heterogeneous low-level physical storage devices, choosing
initial data placement and migrating data between devices in
response to changes in cluster-wide resource utilization and
storage capacity, and to take advantage of strengths of different
media, with a goal of making out-of-core data access as fast as
possible. Higher level system services, such as temporary file
systems or swapping systems, interact with our top-level single

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.22

121

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.22

121

device interface to take advantage of heterogeneous, adaptive,
fast, cluster-wide storage. By moving most device-specific
management into Nswap2L, our system frees cluster operating
systems from needing specialized policies in swapping and file
subsystems that are tuned for every different type of physical
storage device. Our current implementation of Nswap2L can
be added as a swap device on individual cluster nodes.
Our future work includes extending its use, particularly for
temporary local file system storage.

The rest of the paper is organized as follows: Section II
discusses related work in fast random access storage; Sec-
tion III presents background on Nswap’s Network RAM
implementation; Section IV presents experimental studies mo-
tivating our two-level design; Section V discusses the design
and implementation of Nswap2L; Section VI presents results
evaluating Nswap2L; and Section VII concludes and discusses
future directions.

II. RELATED WORK

The work most related to ours includes other work in
Network RAM, and work in incorporating solid state storage
into systems. Network RAM uses remote idle memory as
fast backing store in networked and cluster systems. This
idea is motivated by the observation that network speeds are
increasing more rapidly than disk speeds. In addition, because
disk speeds are limited by mechanical disk arm movements
and rotational latencies, the disparity will likely continue to
grow. As a result, accesses to local disk will be slower than
using remote idle memory as backing store and transferring
blocks over the faster network. Further motivation for Network
RAM is supported by several studies [1], [2], [3] showing
that large amounts of idle cluster memory are almost always
available.

There have been several previous projects examining the
use of remote idle memory as backing store for nodes in
networks of workstations [4], [3], [5], [6], [7], [8], [9], [10],
[11]. Some incorporate Network RAM into an OS’s paging
system, some into an OS’s swapping system, and others into
an OS’s file system as a cooperative cache for file data.
Most use a central server model, wherein a single node is
responsible for managing the Network RAM resource and
clients make memory requests to this central server. A few,
including ours, are completely distributed, where peers running
on individual cluster nodes can make Network RAM allocation
and deallocation decisions without having to contact a central
authority. Our system has the unique quality of adapting to
changes in cluster RAM usage by migrating remotely swapped
pages between nodes in response to these changes. This allows
our system to be persistent on a cluster and ensures that it will
not interfere with cluster application RAM use.

There has also been much recent work that examines
incorporating emerging solid-state storage into systems [12],
[13], [14], [15], [16]. Different uses include incorporating flash
into the memory hierarchy and using it as a fast out of core
buffer cache in database management systems. Some work
has examined how flash can be used in high-performance

computing. In [15], the authors compare scientific workload
run times for different backing storage devices: two flash
devices and disk. They find that for sequential workloads, the
flash drives offer little improvement over disk, but for parallel
workloads flash significantly outperforms disk, primarily due
to increased opportunity for parallel I/O. In [16], the au-
thors model several emerging storage technologies, including
phase-change memory and spin-torque transfer memory. They
find that these newer technologies can lead to significant
performance improvements, especially if the OS is modified
to remove the classical assumption that I/O is very slow
compared to computation.

The FlashVM project [14] examines using flash as the
virtual memory system’s paging and swapping device. They
show that many changes need to be made to the operating
system in order for flash to be used efficiently by the VM
system. These include changes to device scheduling policies
that are are optimized for magnetic disk, zero-page sharing to
avoid some flash wear-out, and call-backs to the flash device
when blocks are freed so that erasure blocks can be cleaned.

We anticipate that general purpose clusters will increasingly
incorporate more flash memory, but will also continue to
use disk until the cost of flash, or other fast backing store,
significantly decreases. In addition, issues with flash wear-
out and write degradation require solutions before flash SSD
completely replaces magnetic disk. We also anticipate that
Network RAM will continue to rival fast solid state storage.

III. NSWAP’S ADAPTABLE NETWORK RAM

Nswap [17], [18] is our Network RAM system for Linux
clusters. It is implemented as a loadable kernel module that
is easily added as a swap device on cluster nodes. Nswap
runs entirely in kernel space on an unmodified 2 Linux 2.6
kernel; it transparently provides network swapping to cluster
applications. Nswap is designed to be efficient, to adapt to
changes in nodes’ RAM use, and to scale to large-sized
clusters.

Each Nswap node is an equal peer running both the Nswap
Client and the Nswap Server (shown in Figure 1). The client
is active when a node is swapping. The server is active when
a node has idle RAM space that is available for storing page
data swapped to it from remote nodes. At any point in time
a node is acting either as a client or a server, but typically
not both simultaneously; its role changes based on the current
RAM needs of its local processes.

Nswap is designed to scale to large clusters using an
approach similar to the Mosix [19] design for scalability. To
find available remote swap space, each node uses only its
own local information about available idle RAM in the cluster
(shown as the IPTable in Figure 1.) This information does not
need to be complete nor completely accurate. The IPTable
stores an estimate of the amount of available idle RAM on
some other nodes. These values are updated when nodes

2Currently, we require a re-compile of the kernel to export two kernel
symbols so that our module can read the kernel’s swap map for our device,
but no kernel code is modified

122122

amt
B 44
C 17
D 20

. .
 .

. .
 .

host
IP Table

Nswap clientNswap clientNswap Server

User Space

BCshadow
slot map

Kernel Space

client threads

Node A
Nswap Server

Nswap Cache

threads

IP Table
Nswap client

A’s page j

server

Node B

read (swap in) page j

copy of page j

SWAP IN

Fig. 1. Nswap System Architecture. Node A shows the details of the client including the shadow slot map used to store information about which remote
servers store A’s pages. Node B shows the details of the server, including the Nswap Cache of remotely swapped pages. In response to the kernel swapping
in (out) a page to our Nswap device, a client thread issues a SWAPIN (SWAPOUT) request to read (write) the page from a remote server.

periodically broadcast their available idle RAM capacities.
Each Nswap node is also solely responsible for managing just
the portion of its local RAM that is currently available for
storing remotely swapped pages (shown as the Nswap Cache
in Figure 1.) Because there is no central authority managing
network RAM allocation, Nswap can easily scale to large-
sized clusters.

The multi-threaded Nswap Client is implemented as a
device driver for our pseudo-swap device. A client thread is
activated when the kernel makes a swap-in or swap-out request
to our swap “device”, just as it would to a driver for a swap
partition on disk. For any swap device, the kernel has a data
structure called a swap map used to keep track of each 4K
page of allocated swap space on the device. The Nswap Client
keeps additional information about each page of swap space
in a data structure called the shadow slot map. There is one
shadow slot map entry per kernel swap map entry. When a
client thread receives a swap-in request from the kernel, it
looks up the server ID in the corresponding shadow slot map
entry and sends a swap-in request to the Nswap Server storing
the page. For example, in Figure 1, the client thread handling
a read request from the kernel for swap slot j looks up entry
j in the shadow slot map to find that server B stores the page.
When the client receives a swap-out request from the kernel,
it finds a good Nswap Server candidate using IPTable data,
updates its shadow slot map entry with this server’s ID, and
send the server a swap-out request and the page to store.

The multi-threaded Nswap Server is responsible for manag-
ing the portion of its RAM currently allocated for storing re-
motely swapped page data (the Nswap Cache). Server threads
receive swap-in and swap-out messages from Nswap Client
nodes. On a swap-in request, a server thread does a fast look-
up of the page in its Nswap Cache and sends a copy of the
page to the requesting client.

A novel feature of Nswap is its adaptability to changes in
cluster-wide RAM usage. The amount of RAM Nswap makes
available on each node for storing remotely swapped page data
changes with the RAM needs of the workload. The Nswap
Server on each node is responsible for growing and shrinking
the amount of RAM it makes available for storing remotely
swapped page data (its Nswap Cache capacity). It changes its
Nswap Cache capacity in response to local memory use: when

TABLE I
READ AND WRITE ACCESS TIMES TO FLASH AND NETWORK RAM. The
data show the time in seconds to read/write 500,000 4KB pages to each

device via /dev. Each value is the average of 10 runs.

Operation Flash Network RAM
SATAI 1Gb Ethernet

Read 23.5 secs 21.7 secs
Write 32.7 secs 20.2 secs

local processes need more RAM space, the Nswap Server
releases pages from its Nswap Cache back to the local paging
system; when idle RAM becomes available, the Nswap Server
allocates some of it, increasing the size of its Nswap Cache.
When an Nswap Server gives RAM back to the paging system,
remotely swapped page data stored in that RAM are migrated
to other Nswap Servers that currently have available Nswap
Cache space. If no available Nswap Cache space exists, pages
are migrated back to their owner’s node and written to swap
space on local disk. Nswap’s adaptability is key; it allows
Nswap to be persistent on clusters and not interfere with the
RAM needs of cluster applications.

IV. MOTIVATION FOR TWO LEVEL DRIVER SYSTEM

In support of the two-level design of Nswap2L, we con-
ducted experiments comparing Network RAM and flash
speeds. All experiments were run on a 12 node cluster, each
node running a 2.6.30 Linux kernel and connected by a 1
Gigabit Ethernet switch 3. Our first experiment compares
direct reads and writes through /dev to flash and to Nswap’s
Network RAM. We measured the total time to perform a large
sequential write to the device followed by a large sequential
read. The amount of data transfered is larger than physical
RAM, thus all reads should require physical device I/O and
will not be satisfied by the file cache.

The results, in Table I, show that Nswap outperforms flash
devices for reads and writes (21.7 vs. 23.5 seconds and 20.2 vs.
32.7 seconds.) However, the read speeds from flash are close to
those from Nswap. The relative read performance will depend
on the particular devices; however, based on this experiment as
well as other studies of flash performance [16], [14], [20], we
anticipate that reads to flash will rival, and may outperform,

3Nodes have Pentium4 processors, 80GB Seagate Barracuda7200 IDE disk
drives, and Intel X25-M SATAI 80GB Flash SSD drives

123123

TABLE II
KERNEL BENCHMARKS COMPARING SWAPPING TO FLASH VERSUS

SWAPPING TO NSWAP’S NETWORK RAM.

Workload Flash Nswap
WL1: sequential writes and reads 253.34 secs 232.50 secs
WL2: random writes and reads 181.60 secs 119.49 secs
WL3: WL1 plus disk file system I/O 208.63 secs 147.31 secs
WL4: WL2 plus disk file system I/O 259.24 secs 120.06 secs

reads to Network RAM and that writes to Network RAM will
outperform writes to flash. This experiment motivates choosing
Network RAM as the initial target of written pages, and then
migrating pages from Network RAM to flash so that some
subsequent read requests can be satisfied by faster flash; or, in
the case when flash and Network RAM are equally good, more
reads can be handled in parallel by distributing them over both
Network RAM and flash. We do not want to write to both flash
and Network RAM simultaneously since the slowest device
will determine the time it takes to satisfy the write request.
Therefore, prefetching and migration will be a better way to
take advantage of the strengths of each device.

Our second experiment compares using flash to using
Nswap’s Network RAM as a swap device. The experiment
measures the runtime of four memory-intensive kernel bench-
mark programs, each designed to stress different cases when
disk I/O should be particularly good or bad: WL1 consists
of iterations of a large sequential write followed by a large
sequential read to virtual memory and is the best case for
swapping to disk because the memory access patterns match
the swap allocation patterns, and disk seek time is minimized;
WL2 writes and reads to random memory locations and
triggers random read and write access to the swap partition,
increasing disk head movement within the swap partition;
finally, WL3 and WL4 consist of one WL1 or WL2 process
and another process that reads and writes to a local file
partition, further stressing disk arm movement between the
swap and file partitions.

The results, in Table II, show that all four benchmarks per-
form better when Network RAM is used as the swap partition.
However, the results for flash are comparable. Because the
flash execution times include both reads and writes to the
flash drive, our proposed two-level design that makes use of
both flash and Network RAM has the promise to outperform
either flash or Network RAM alone. Even if Network RAM is
always faster than flash, our system will allow for data stored
in Network RAM to be moved to flash when there is not
enough cluster-wide idle RAM available for Network RAM.

Finally, we evaluate prefetching opportunities in real work-
loads by examining swap access patterns for several parallel
benchmark programs: Radix from SPLASH-2 [21], [22], IS
from NAS Parallel [23], and the Linpack HPL [24] benchmark.
Figure 2 shows read and write accesses to swap slots over the
run of Radix 4. The results show locality in swap slot accesses,
particularly a clear pattern of sequential writes, which match

4Swap access patterns for the IS and HPL benchmarks are very similar to
Radix and are not included here due to space restrictions.

Fig. 2. Read and Write accesses to Swap Slots over the execution of the
Radix SPLASH-2 benchmark. The x-axis is time and the y-axis is swap slot
number. Reads are shown in grey, writes in black.

the OS’s swap allocation policy. The data also show that writes
are much less frequent than reads; in fact, analysis of the raw
data indicates that almost all swap slots are written to only
one time and read from multiple times. These results support
prefetching pages from Network RAM to flash. The locality of
swap access patterns means that prefetching policies could be
developed to make good guesses at which pages to prefetch.
In addition, because swapped data are likely to be written
once but read multiple times, prefetching may be cost effective
by prefetching a page just once into flash to obtain multiple
subsequent fast reads of the page.

V. NSWAP2L DESIGN AND IMPLEMENTATION

Figure 3 shows Nswap2L’s system architecture. It is a
multi-layered system which separates the interface, policy, and
mechanism components. At the top is the Interface Layer with
which the OS and user-level programs interact. Currently, it
implements an interface of a single, fast random access block
device that can be added as a swap partition on cluster nodes.
In the future we plan to extend Nswap2L functionality so that
it can be used as backing store for other kernel and user-
level services such as temporary file systems, and we plan to
add new interfaces, including a programmable API. Currently,
the Interface layer contains functions to read and write to our
“device”. In the future, we plan to add Interface functions
to free and allocate blocks and to force persistent storage
of some blocks. The Interface layer maintains a mapping of
where blocks written to our top-level ”device” are stored on
the underlying physical devices.

The Policy Layer implements policies for choosing under-
lying placement of blocks written to our top-level “device”,
for prefetching blocks from one physical device to another,
and for migrating blocks between different low-level devices.

The Mechanism Layer implements functionality to read and
write blocks to different low-level physical devices, to move
a block stored on one device to another, and to free blocks

124124

Mechanism Layer:

Policy Layer:

read/write page to/from low−level device

Interface Layer: Single, Fast, Random Access Block Device

Kernel and/or User−level

migrate page from one backing store to another

choose low−level device for data placement

Programmable
API

Other...

free a page/block from top−level device
allocate space from top−level device

Physical Storage:

storage ...
Network RAM Flash SSD disk other cluster−wide

prefetching blocks between low−level devices

force persistent storage for page/block

read/write a page or block to/from top−level device

move page from one low−level device to another
free a page from low−level device

Fig. 3. Nswap2L System Architecture. It supports a set of interfaces on
top of multiple physical storage. Current functionality is shown in black and
white. Future functionality is shown in grey boxes.

Network
RAM

Kernel: R/W blocks

FlashSSD

Flash Driver Block Driver

Device

. . .

. . .

Nswap2L Top−Level Device Driver

Disk Driver

Disk

dm_io interface

Fig. 4. Nswap2L Implementation. When used as backing store for swap, the
OS sends R/W requests to the top-level Nswap2L driver. The top-level driver
directly manages all parts of Nswap’s Network RAM backing storage and
uses dm io to pass I/O requests to the other low-level device drivers.

stored on physical devices. The Policy Layer makes calls to
the Mechanism Layer layer to place, prefetch, and migrate
blocks between underlying physical devices.

Conceptually, Nswap2L is implemented as two levels of
device drivers; the top level is a single pseudo-device driver
that sits on top of multiple low-level device drivers, one
for each physical storage device. The top level receives I/O
requests from the OS’s swap system and keeps track of where
data are stored on underlying physical devices so that it can
send I/O requests to the appropriate low-level physical storage
device. The top-level driver implements all the layers of our
system architecture. For example, when it receives a write
request from the kernel, it runs code in the Policy Layer
that chooses a physical device on which to place the blocks,
updates mapping information about where the block is placed,
and invokes functions in the Mechanism Layer for writing to
an underlying physical device.

Our prototype implementation (in Figure 4) closely fits our
conceptual two-level driver model. We appear to Linux as a
single, fast, block device, and receive read and write requests
from the Linux swap system. The top-level driver directly
manages the Network RAM storage and passes read and write

requests to lower-level device drivers for flash, disk, or other
storage devices. We use Red Hat’s Device Mapper module
(dmio) [25] to pass I/O requests from the top-level driver to
the low-level drivers.

The top-level driver uses the shadow slot map to track which
underlying low-level device stores each block. When a read
request to the top-level “device” is made, Nswap2L looks up
the location of the page in its shadow slot map. If the page is
stored in Network RAM, it handles all the low-level messaging
to request a copy of the page from the Nswap Server storing
the page. If, however, the page is stored on a different physical
device, Nswap uses the dmio interface to read in the page
from the underlying device. On a write request, the top-level
driver chooses a low-level device for placement and encodes
the device or Nswap Server in the shadow slot map entry for
the page.

Nswap2L’s current page placement policy always chooses
Network RAM first, choosing flash only when no Network
RAM space is available. This policy is designed to work well
in systems where writes to Network RAM are faster than
writes to flash. We anticipate that, in general, data placement
policies will be simple and will likely consist of a fixed ranking
of underlying devices. However, it is possible that policies
that take into account resource usage such as network load
may result in better placement decisions. In the future, we
plan to investigate dynamic policies that may choose flash as
the target even when there is Network RAM space available.
For example, if there is a large burst of writes, it may be
advantageous to distribute writes over flash and Network RAM
to handle more in parallel.

Prefetching is one way to improve performance, taking
advantage of the strengths of different underlying media by
targeting different devices for reads and writes and distribut-
ing storage across equally good devices to improve the I/O
bandwidth of our “device”. For example, writes to flash are
generally slower than reads, primarily due to erasure. Our
performance studies from Section IV support initially writing
pages to Network RAM and later prefetching some pages from
Network RAM to flash so that some subsequent reads can be
satisfied by flash. If flash reads are faster than Network RAM
reads, then this will improve the performance of reads to our
“device”. If flash reads remain comparable to Network RAM
reads, then prefetching can improve I/O bandwidth.

It is important to develop good prefetching policies that
will pick the best pages to move from Network RAM to flash.
However, the cost of a bad prefetching choice in our system
is much less than that of a bad prefetching choice in paging
and file systems that prefetch from backing store into main
memory; in our system, a bad prefetching choice will never
result in more paging or swapping. Therefore, we may be
able to implement more aggressive prefetching algorithms than
those used in paging and file systems that prefetch pages from
backing store into RAM.

Nswap2L’s prefetching policy implementation is divided
into sub-policies that answer three questions: (Q1) ”When
should prefetching occur?”; (Q2) ”How many pages should be

125125

prefetched?”; and (Q3) ”Which pages should be prefetched?”
Functions that implement answers to these three questions
can be combined to create different prefetching policies. Our
current focus is on prefetching from Network RAM to flash;
however, to support prefetching between any two devices, a
fourth policy question (”From which device should pages be
prefetched?”) would be added.

Our implementation uses a prefetching thread that periodi-
cally wakes up and runs policy functions associated with the
three questions. The implementation is designed so that new
policies can be easily added to our system. We also added
a /proc interface to the prefetching subsystem that allows
prefetching to be enabled or disabled, and allows changing
the particular sub-policy functions on the fly.

The first question (when should prefetching occur) is deter-
mined by both the amount of time the prefetch thread sleeps
between checks, and by the particular Q1 policy function.
Q1 policies could be based on current swapping activity. For
example, it may be advantageous to prefetch only when a node
is in a swapping phase because pages have more potential to
be prefetched before being swapped in again. On the other
hand, prefetching during swapping activity may lead to a slow
down of the application’s performance as prefetching I/O could
interfere with swapping I/O.

Q2 policies (how much should be prefetched) can be based
on a fixed percent of total swap space in use, or on a
percentage of the number of pages swapped out the last time
the prefetch thread woke up. We have both types of policies
implemented. The second type requires adding a counter to
keep track of the number of swap outs between prefetch thread
activations.

Q3 policies (which pages should be prefetched) could be
quite simple, such as a round-robin selection of swap slots,
or they could be based on swap slot access patterns in an
attempt to make better prefetching choices by trying to chose
pages to prefetch that are likely to be read soon. Currently, we
have four Q3 policies implemented: round-robin of swap slots;
randomly selected swap slots; selecting the Least Recently
Swapped to (LRS) slots; and selecting the Most Recently
Swapped to (MRS) slots. If there is locality in swap slot
accesses, then MRS should prefetch pages that are most likely
to be swapped in soon. LRS and MRS are implemented using a
clock approximation algorithm. We added a reference bit to the
shadow slot map that is set when a slot is swapped in or out,
and is cleared by the clock hand when MRS or LRS Q3 policy
functions run. LRS chooses slots with clear reference bits to
prefetch (an approximation of the least recently swapped to),
and MRS chooses slots with set reference bits.

VI. EXPERIMENTAL RESULTS

In this section, we present results of several experiments
evaluating Nswap2L. Our first experiment compares the run-
time of a set of sequential and parallel benchmarks (described
in Section IV) for different swap devices: Nswap2L; flash
SSD; Nswap Network RAM; and disk. For this experiment,
Nswap2L swapped only to Network RAM; prefetching to flash

TABLE III
COMPARISON OF DIFFERENT SWAP DEVICES. The benchmark total run time
(in seconds) when run using Nswap2L, Nswap Network RAM, flash or Disk
as the swap partition. Bold entries show the best time. Nswap2L speedups

over disk are in parentheses.

Benchmark Nswap2L Nswap Flash Disk
WL1 443.0 (3.5 speedup) 471.8 574.2 1547.4
WL2 591.6 (30.0) 609.7 883.1 17754.8
WL3 503.3 (3.4) 526.4 514.1 1701.3
WL4 578.9 (30.9) 591.7 978.4 17881.2
Radix 110.7 (2.3) 113.7 147.4 255.5
IS 94.4 (2.4) 95.1 107.6 224.4
HPL 536.1 (1.5) 529.7 598.7 815.3

was not enabled. Table III shows the total runtime of the
benchmarks for the four different swap devices. The results
show that all benchmarks perform best when Nswap2L or
Nswap Network RAM are used as the swap device. Disk is
much slower, even for WL1 which is the best possible case for
disk swapping. The results for flash are comparable to Network
RAM. Since the flash execution times include both reads and
writes to the flash drive, our proposed two-level system that
makes use of both flash and Network RAM has the promise
to outperform both flash and Network RAM alone. Even if
Network RAM is always faster than flash, our system will
allow for data stored in Network RAM to be moved to flash
when there is not enough cluster-wide idle RAM available for
Network RAM, and will allow for increased parallel reads by
distributing them over both flash and Network RAM.

These results also show no additional overhead of Nswap2L
over Nswap Network RAM when Nswap2L swaps to Network
RAM only. Given that in our implementation of Nswap2L the
top-level driver directly manages Network RAM, we expected
that Nswap2L would not add additional overheads to Nswap
when all pages are swapped to Network RAM, and these data
confirm our expectation.

Our second set of experiments evaluate Nswap2L’s prefetch-
ing policies. For these experiments, the placement policy
always chooses Network RAM for swapped-out page data,
the prefetch thread then periodically runs and prefetches some
pages from Network RAM to flash, and subsequent swap-in
requests from the kernel are satisfied by Network RAM or
flash depending on whether the page has been prefetched or
not. All prefetching experiments used a Q2 policy (how many
pages to prefetch) that tries to prefetch a number of pages up
to 10% of the number of swap outs since the last activation of
the prefetching thread. We compared runs with no prefetching
(Control) to four different Q3 prefetching policies: Round-
robin (RR); Random; Least Recently Swapped (LRS); and
Most Recently Swapped (MRS).

Assuming that increasing the number of reads from flash is
desirable, the most effective prefetching policy is the one that
has the most reads per prefetched page—the policy that max-
imizes the likelihood of a page being swapped in from flash.
Table IV shows the ratio of the number of reads from flash to
the number of prefetches to flash for the different prefetching
policies for each of the benchmark programs. A ratio value

126126

TABLE IV
FLASH READ TO PREFETCHING RATIOS. The rows are prefetching

algorithms, the columns benchmark programs, and the values are the ratio
of the number of reads from flash to the number of prefetches to flash.

WL1 WL2 IS Radix HPL
RR 1.1 3.0 1.7 0.5 0.9
RAND 1.2 3.2 1.4 0.5 0.8
LRS 1.1 2.7 1.9 0.2 0.8
MRS 1.2 3.0 1.6 0.4 0.8

TABLE V
AVERAGE DEGREE OF READ PARALLELISM.

WL1 WL2 IS Radix HPL
No Prefetching 5.5 5.7 5.6 5.4 5.2
Prefetching 3.8 5.3 6.1 13.7 13.1

greater than one is an indication that prefetched pages are,
on average, being read multiple times from flash before being
swapped out again, and indicates a better prefetching policy.

For WL1 and WL2 the data show that RAND performs
best (1.2 and 3.2 ratio values) and LRS performs worst (1.1
and 2.7). For WL2, RAND is likely to work just as well as
policies that account for usage due to WL2’s random memory
access patterns. For WL1, we expected LRS to perform well
because of WL1’s large sequential access patterns, however,
the data show that LRS does not perform any better than the
other policies for WL1. This result is due to WL1’s pattern of
alternating large reads and writes that means that a prefetched
page read in from flash has a 50% chance of being modified
before being swapped out again. Thus, the best ratio we would
expect for WL1 would be about 1.5.

The parallel benchmark results display more variance:
LRS performs best on IS (ratio of 1.9), but has the worst
performance on Radix (ratio of 0.2); RAND performs best
on Radix, but has the worst performance on IS and HPL;
and, RR performs best on HPL. It is surprising that MRS
does not do better given that the swap trace results from
Section IV indicate that recently swapped pages are often
accessed again. It does, however, do reasonably well across
all of the benchmarks, so it may be a good general policy.
These results also may indicate that different policies perform
better for different workloads, thus a system that is tunable like
ours is likely to be best for handling the variable workloads
of general purpose clusters.

To test the hypothesis that prefetching leads to more paral-
lelism, we ran the benchmarks with Nswap2L’s profiler thread
enabled. The profiler thread attempts to get a picture of the
amount of concurrency in the system by recording the number
of Nswap Client threads simultaneously handling reads and
writes to our device. The profiler thread wakes up twice every
second and samples global counters that are incremented by
client threads when they are actively handling swap-in or
swap-out requests from the kernel. Over time, the profiler
thread builds histograms of read and write concurrency. The
average degree of read and write parallelism is obtained from
these histogram data.

Table V shows the average degree of read parallelism of

TABLE VI
COMPARISON OF PREFETCHING POLICIES. Average runtime is shown in

seconds. Workloads in are columns, policies in rows.

Policy WL1 WL2 WL3 WL4 IS Radix HPL

Control 443.0 591.6 503.6 578.9 113.2 97.2 550.2
RR 905.7 832.3 694.7 835.5 179.5 114.9 619.1
RAND 650.3 819.2 621.9 818.0 146.2 108.2 607.3
LRS 924.1 815.2 678.7 802.0 172.1 105.6 580.5
MRS 884.5 829.9 685.0 815.6 180.8 114.0 622.6

the sequential and parallel benchmarks. These data show that
Nswap2L with prefetching leads to increased read parallelism
for the parallel benchmarks (the best case being Radix with
13.7.) For the sequential benchmarks there is no improve-
ment in average read parallelism primarily because there is
only one sequential process running on the node for these
benchmarks. The results for the parallel benchmarks show
that prefetching increases parallelism (for example 5.2 for
HPL with no prefetching vs. 13.1 for HPL with prefetching.)
Because the parallel benchmarks are typical of the types of
cluster workloads that our system is targeting, the parallel
benchmark results show that Nswap2L with prefetching has
the promise to improve the performance of applications run-
ning on general purpose clusters; these data show an increase
in read parallelism by distributing reads across Network RAM
and flash, so when flash and Network RAM speeds are about
the same, the result should be improvement in total runtime.

Table VI lists the total execution time of the benchmark
programs for the different prefetching polices. The results
show that any prefetching to flash hurts performance, the best
case for prefetching being HPL-LRS with a slow down of
only 1.05 over the Control run (580.5 vs. 550.2 seconds), the
worst case being WL1-LRS with a slow down of 2.08 (924.1
vs. 443.0 seconds). Based on our studies in Section IV, our
particular flash device has slightly slower read performance
than Network RAM, so we anticipated that the runs with
prefetching might be slightly slower than the Control runs
that use Network RAM alone. We also anticipated that we
would see some improvements in run times even though
flash is slightly slower than Network RAM due to increased
parallelism in simultaneous reads from flash and Network
RAM. However, we did not anticipate the larger slow downs.

The reason for the slow down in run times when prefetching
is enabled is the high dmio overheads of our current imple-
mentation of Nswap2L. To quantify the overhead imposed
by dmio, we ran the sequential benchmarks with Nswap2L
using only flash as the underlying devices and then using only
Network RAM as the underlying devices. We found that dmio
adds up to 700% overhead on reads and writes to flash.

Although prefetching does not lead to runtime performance
improvements under Nswap2L’s current prototype implemen-
tation, this result is only an artifact of our current implemen-
tation’s use of dmio, and is not fundamental to Nswap2L’s de-
sign. It is therefore worthwhile to consider which prefetching
policy would be most effective, given a different implementa-
tion of Nswap2L—an implementation that removes the dmio

127127

TABLE VII
PARTS OF BENCHMARKS’ RUN TIMES USED FOR CALCULATING IDEAL

RUN TIMES. All values are in seconds unless labeled otherwise. TT is the
total execution time, NWRsp is average time to perform a single page read
from Nswap2L’s Network RAM, FRCtm is the cumulative time of all the
reads from flash, NWRCtm is the cumulative time of all the reads from
Network RAM, and NFreads is the total number of reads from flash.

TT NWRsp FRCtm NWRCtm NFreads
WL1 Control 455.8 177.5 μs N/A 840.5 N/A
WL1 RAND 616.8 141.5 μs 349.0 655.3 413,713
HPL Control 628.4 153.1 μs N/A 96.1 N/A
HPL LRS 708.5 152.7 μs 68.9 93.0 24,186

overhead for accessing the flash device.
We estimate the performance of Nswap2L without the dmio

overhead to flash I/O, using our experimental results with dmio
and our measured times of the low-level devices to remove
dmio overheads. We calculate the ideal execution time (the
time of Nswap2L without dmio overhead) as:

(1) ideal = ((pctNS)∗TT)+((pctS)∗(TT−FRtm+IFRtm))

The (ideal) runtime is for flash reads with no dmio overhead,
pctNS and pctS are the proportion of the total runtime due to
non-swapping and swapping, TT is total measured runtime,
FRtm is the time for flash reads with dmio, IFRtm is the
time for flash reads with no dmio overhead.

To compute the ideal runtime, we ran the benchmarks
with timers enabled to extract the portion of the run time
due to reading from flash and reading from Network RAM
(shown in Table VII.) We also measured the proportion of
each application’s execution due to swapping by comparing
run times using two different amounts of physical RAM, one
that results in swapping and one that does not. We found that
99% of WL1’s execution time is due to swapping, and 40%
of HPL’s execution is due to swapping.

The cumulative read times in Table VII do not account
for the fact that reads are concurrent, so we estimate the
part of the execution due to flash reads (FRtm) based on
the proportion of the measured flash and network cumulative
read times (FRCtm and NWRCtm) multiplied by the total
execution time (TT):

(2) FRtm = (TT) ∗ ((FRCtm)/(FRCtm+NWRCtm))

Next, we calculate the ideal flash read speed with no
dmio overhead (IFsp) as the ratio of measured direct
flash (DirFRtm) read time to direct network read time
(DirNWRtm), from Table I, multiplied by the average
network read time for the run (NWRsp), from Table VII:

(3) IFsp = ((DirFRtm)/(DirNWRtm)) ∗ (NWRsp)

From this we obtain an estimate of the the cumulative ideal
flash read time (IFCtm) and portion of the execution time
due to ideal flash read time (IFRtm):

(4) IFCtm = IFsp ∗ (total num flash reads)

(5) IFRtm = TT ∗ (IFCtm/(IFCtm+NWRCtm))

With values for (2) and (5), we compute the ideal runtime of
the prefetching experiments without dmio overhead (1). For
example, for WL1-RAND we compute:

(2) FRtm = (616.8) ∗ ((349)/(349 + 665.3)) = 214.3

(3) IFsp = (23.62/20.43) ∗ (141.5μs) = 163.6μs

TABLE VIII
BENCHMARK COMPUTED PREFETCHING RUN TIMES. Control is the

measured non-prefetching time. Ideal is the computed prefetching runtime
without added dmio overhead using our system’s measured flash device

speed. Flash 10% (and Flash 20%) are computed prefetching run times for
a flash device that is 10% (and 20%) faster than the network.

Control Ideal Flash 10% Flash 20%
(no dmio) < network < network

WL1 Random 455.8 461.8 450.1 445.3
HPL LRS 628.4 600.3 597.0 595.9

(4) IFCtm = (163.6μs) ∗ 413713 = 67.7

(5) IFRtm = (616.8) ∗ ((67.7)/(67.7 + 655.3)) = 57.7

(1) ideal = (.01)(616.8)+(.99)(616.8−214.3+57.8) = 461.8

The ideal run time of WL1-RANDOM, 461.8, is much
closer to the control WL1 run time of 455.77 seconds and
better fits our expectations based on the measured speeds of
our flash and network devices. Since there is no increase in
parallel reads for the prefetching runs of WL1, the computed
ideal run time for the prefetching run is slightly slower than
the run time with no prefetching because reads from our flash
device are slightly slower than reads from Network RAM.

In Table VIII we show calculated run times of WL1, and
HPL benchmarks for our ideal measured flash times (no dmio
overhead), and for flash devices that are 10% and 20% faster
than the network. We chose WL1 and HPL because they both
run long enough to do a fair amount of prefetching, and they
illustrate two extremes in read parallelism during the runs with
prefetching (WL1 shows no increase in parallelism, and HPL
shows a significant increase.)

The run times for faster flash devices were calculated
starting with a computed flash speed for function (3) and then
applying functions (4) and (5) to calculate the total runtime
(1). For example, to estimate a flash read speed that is 10%
faster than the network we used:
(3)IFsp = .9 ∗NWRsp

The results in Table VIII show that when flash is 10%
or 20% faster than the network, Nswap2L with prefetching
outperforms swapping to Network RAM alone. In addition,
the HPL-LRS ideal runtime (using our system’s measured flash
speed that is slightly slower than the network) is faster than
using Nswap2L with Network RAM alone (600.3 vs. 628.4
seconds). HPL’s faster ideal run time is due to the increase
in the average degree of parallel reads when prefetching is
enabled (5.2 for Control vs. 13.1 for LRS). This result supports
our two-level design even when flash is slightly slower than
Network RAM; here prefetching results in an increase in
parallel reads that lead to a faster run time.

VII. CONCLUSION AND FUTURE WORK

Nswap2L is our novel two-level device design that provides
a high-level interface of a single, fast, random storage device
on top of multiple fast random access storage media, namely
flash and Network RAM. By moving device-specific knowl-
edge into the top level of our system, OS subsystems and
policies do not need to be specialized for the heterogeneous
set of backing storage that is emerging in clusters. Our

128128

experimental results support our design, and they show that
Nswap2L provides a fast swapping device for clusters. Even
in systems where flash is slower than Network RAM, we show
that when Nswap2L prefetches pages from Network RAM to
flash, there is an increase in parallel reads to our “device”
as reads are simultaneously handled by the underlying flash
and network devices. Our current prototype implementation
prevents us from achieving the performance improvements that
we anticipated from prefetching, but we show that with a better
implementation, Nswap2L will outperform flash or Network
RAM alone. Nswap2L with prefetching performs particularly
well for the parallel benchmarks, which match the typical
cluster workload better than our sequential benchmarks.

Our future work includes developing and testing a new
implementation of Nswap2L that removes the extremely high
overhead of the dmio interface between our top-level driver
and the flash driver. With a new implementation, we will be
able to obtain experimental results that are not hindered by
an implementation artifact. We also plan to further investigate
prefetching policies, in particular, examining on-line tuning of
prefetching polices based on current workload behavior, and
comparing dynamic and fixed policies for different workloads.

Finally, we plan to examine other system abstractions that
can use Nswap2L as backing store. In particular we will
extend Nswap2L so that it can be used as backing store
for local temporary file systems, and we will implement a
programmable API that can be used to support other ab-
stractions on top of Nswap. Because data persistence is a
requirement of general purpose file systems, and because data
stored in volatile Network RAM cannot implicitly meet these
persistence requirements, we do not foresee adding support for
general purpose file systems in the near future. However, by
extending Nswap2L so that it can be used to store temporary
files, Nswap2L could support a larger class of data intensive
cluster applications. In particular, applications that process
large amounts of data and store partial results in temporary
files, such as database query processing and libraries for
accessing large data sets [26], [27], will perform better using
an Nswap2L-backed temporary file system.

REFERENCES

[1] A. Acharya and S. Setia, “Availability and Utility of Idle Memory on
Workstation Clusters,” in ACM SIGMETRICS Conference on Measuring
and Modeling of Computer Systems, May 1999.

[2] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson,
and D. A. Patterson, “The Interaction of Parallel and Sequential Work-
loads on a Network of Workstations,” in ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, 1995.

[3] E. P. Markatos and G. Dramitinos, “Implementation of a Reliable
Remote Memory Pager,” in USENIX 1996 Annual Technical Conference,
1996.

[4] T. Anderson, D. E. Culler, D. A. Patterson, and the NOW Team, “A
case for NOW (networks of workstations),” IEEE Micro, Febuary 1999.

[5] L. Iftode, K. Petersen, and K. Li, “Memory Servers for Multicomputers,”
in IEEE COMPCON’93 Conference, Febuary 1993.

[6] G. Bernard and S. Hamma, “Remote Memory Paging in Networks of
Workstations,” in SUUG’94 Conference, April 1994.

[7] Michael J. Feeley and William E. Morgan and Frederic H. Pighinand
Anna R. Karlin and Henry M. Levy and Chandramohan A. Thekkath,
“Implementing Global Memory Management in a Workstation Cluster,”
in 15th ACM Symposium on Operating Systems Principles, Dec 1995.

[8] L. Xiao, X. Zhang, and S. A. Kubricht, “Incorporating Job Migration
and Network RAM to Share Cluster Memory Resources,” in Ninth IEEE
International Symposium on High Performance Distributed Computing
(HPDC’00), 2000.

[9] J. Oleszkiewicz, L. Ziao, and Y. Liu, “Parallel network RAM: Effectively
utilizing global cluster memory for large data-intensive parallel pro-
grams,” in IEEE 2004 International Conference on Parallel Processing
(ICPP’04), 2004.

[10] S. Liang, R. Noronha, and D. K. Panda, “Swapping to remote memory
over infiniband: an approach using a high performance network block
device,” in IEEE Cluster Computing, 2005.

[11] M. Dahlin, R. Wang, T. E. Anderson, and D. A. Patterson, “Cooperative
caching: Using remote client memory to improve file system perfor-
mance,” in Operating Systems Design and Implementation, 1994.

[12] D. Roberts, T. Kgil, and T. Mudge, “Integrating nand flash devices onto
servers,” Commun. ACM, vol. 52, pp. 98–103, April 2009.

[13] R. Weiss, “Exadata smart flash cache and the
sun oracle database machine,” Oracle White Paper,
http://www.oracle.com/database/exadata.html, October 2009.

[14] M. Saxena and M. M. Swift, “FlashVM: virtual memory management
on flash,” in Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, 2010.

[15] S. Park and K. Shen, “A performance evaluation of scientific I/O work-
loads on flash-based SSDs,” in Worshop on Interfaces and Architectures
for Scientific Data Storage, 2009.

[16] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Ja-
gatheesan, R. K. Gupta, A. Snavely, and S. Swanson, “Understanding
the impact of emerging non-volatile memories on high-performance,
IO-intensive computing,” in Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE
Computer Society, 2010.

[17] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel, “Nswap: a network
swapping module for linux clusters,” in Lectures in Computer Science,
2003, proceedings of Euro-Par’03 International Conference on Parallel
and Disributed Computing.

[18] T. Newhall, D. Amato, and A. Pshenichkin, “Reliable adaptable network
ram,” in Proceedings of IEEE Cluster’08, 2008.

[19] B. A., L. O., and S. A., “Scalable Cluster Computing with MOSIX for
Linux,” in Proceedings of Linux Expo ’99, Raleigh, N.C., May 1999,
pp. 95–100.

[20] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh, “A new linux swap system
for flash memory storage devices,” in Proceedings of the 2008 Inter-
national Conference on Computational Sciences and Its Applications.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 151–156.

[21] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” Proc. the 22nd International Symposium on Computer Architec-
ture, June 1995.

[22] Hongzhang Shan, “MPI port of SPLASH2 benchmarks.”
[23] Van der Wijngaart, R. F., “NAS parallel benchmarks version 2.4,” NASA

Advanced Supercomputing (NAS) Division Technical Report NAS-02-
007, October 2000.

[24] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL - a
portable implementation of the high-performance linpack benchmark for
distributed-memory computers,” http://www.netlib.org/benchmark/hpl/,
January 2004.

[25] R. Hat, “device mapper,” http://sources.redhat.com/dm/, 2009.
[26] D. E. Vengroff and J. Scott Vitter, “Supporting i/o-efficient scientific

computation in tpie,” in Proceedings of the 7th IEEE Symposium on
Parallel and Distributeed Processing, ser. SPDP ’95. IEEE Computer
Society, 1995.

[27] R. Dementiev, L. Kettner, and P. Sanders, “Stxxl: standard template
library for xxl data sets,” Softw. Pract. Exper., vol. 38, pp. 589–637,
May 2008.

129129

