
Modularity for Decidability of Deductive Verification
with Applications to Distributed Systems

Marcelo Taube
Tel Aviv University, Israel

mail.marcelo.taube@gmail.com

Giuliano Losa
UCLA, USA

giuliano@cs.ucla.edu

Kenneth L. McMillan
Microsoft Research, USA

kenmcmil@microsoft.com

Oded Padon
Tel Aviv University, Israel

odedp@mail.tau.ac.il

Mooly Sagiv
Tel Aviv University, Israel

msagiv@post.tau.ac.il

Sharon Shoham
Tel Aviv University, Israel

sharon.shoham@gmail.com

James R. Wilcox
University of Washington, USA

jrw12@cs.washington.edu

Doug Woos
University of Washington, USA

dwoos@cs.washington.edu

Abstract

Proof automation can substantially increase productivity
in formal verification of complex systems. However, unpre-
dictablility of automated provers in handling quantified for-
mulas presents a major hurdle to usability of these tools. We
propose to solve this problem not by improving the provers,
but by using a modular proof methodology that allows us
to produce decidable verification conditions. Decidability
greatly improves predictability of proof automation, result-
ing in a more practical verification approach. We apply this
methodology to develop verified implementations of dis-
tributed protocols, demonstrating its effectiveness.

CCS Concepts · Software and its engineering → For-

mal software verification;

Keywords Formal verification, Modularity, Decidable logic,
Ivy, Distributed systems, Paxos, Raft

ACM Reference Format:

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon,
Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug Woos.
2018. Modularity for Decidability of Deductive Verification with
Applications to Distributed Systems. In Proceedings of 39th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI’18). ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3192366.3192414

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06.
https://doi.org/10.1145/3192366.3192414

1 Introduction

Verifying complex software systems is a longstanding re-
search goal. Recently there have been some success stories
in verifying compilers [29], operating systems [22], and dis-
tributed systems [18, 45]. These broadly use two techniques:
interactive theorem proving (e.g., Coq [4], Isabelle/HOL [37])
and deductive verification based on automated theorem
provers (e.g., Dafny [28] which uses Z3 [11]). However, both
techniques are difficult to apply and require a large proof
engineering effort. On the one hand, interactive theorem
provers allow a user to write proofs in highly expressive for-
malisms (e.g., higher-order logic or dependent type theory).
While this allows great flexibility, it generally requires the
user to manually write long and detailed proofs.

On the other hand, deductive verification techniques use
automated theorem provers to reduce the size of the manu-
ally written proofs. In this approach, user-provided annota-
tions (e.g., invariants, pre- and post-conditions) are used to
reduce the proof to lemmas called verification conditions that
can be discharged by the automated prover. In case these
lemmas fail, the prover can sometimes produce counterex-
amples that explain the failure and allow the programmer to
correct the annotations.
Unfortunately, the behavior of provers can be quite un-

predictable, especially when applied to formulas with quan-
tifiers, which are common in practice, e.g., in distributed
systems. Since the problem presented to the prover is in gen-
eral undecidable, it is no surprise that the prover sometimes
diverges or produces inconclusive results on small instances,
or suffers from the łbutterfly effectž, when a seemingly ir-
relevant change in the input causes the prover to fail. As
observed in the IronFleet project, SMT solvers can diverge
even on tiny examples [18]. When this happens, the user
has little information with which to decide how to proceed.
This was identified in IronFleet as the main hurdle in the
verification task.

662

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3192366.3192414

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

One approach to address the unpredictability of automated
solvers is to restrict verification conditions to a decidable
fragment of logic [3, 13, 19, 33]. Our previous work on the
Ivy verification system [35, 39, 40] has used the effectively
propositional (EPR) fragment of first-order logic to verify
distributed protocols designs (e.g. cache coherence and con-
sensus). However, the restrictions imposed for decidability
are a major limitation. In particular, these restrictions are
the reason our previous works only verified protocol designs
rather than their executable implementations.

Decidable Decomposition In this paper, we show how to
use well-understood modular reasoning techniques to in-
crease the applicability of decidable reasoning and support
verifying implementations as well as designs. The key idea
is to structure the correctness proof in a modular way, such
that each component can be proved using a decidable frag-
ment of first-order logic, possibly with a background theory.
Importantly, each component’s verification condition can
use a different decidable fragment. This allows, for example,
one component to use arithmetic, while another uses strat-
ified quantifiers and uninterpreted relations. It also allows
each component to use its own quantifier stratification, even
when the combination would not be stratified. We will refer
to this approach as decidable decomposition. Crucially, de-
cidable decomposition can be applied even when the global
verification condition does not lie in any single decidable
fragment (for example, the combination of arithmetic, unin-
terpreted relations, and quantifiers is undecidable).

Because our prover is a decision procedure for the logical
fragments we use, we can guarantee that in principle it will
always terminatewith a proof or a counter-model. In practice,
decidability means that the behavior of the prover is much
more predictable.

Verifying Distributed Systems As a demonstration of de-
cidable decomposition, we verify distributed protocols and
their implementations. Distributed protocols play an essen-
tial role in today’s computing landscape. Reasoning about
distributed protocols naturally leads to quantifiers and un-
interpreted relations, while their implementations use both
arithmetic and concrete representations (e.g., arrays). This
combination escapes known decidable fragments. In particu-
lar, it prevented our previous work on the Ivy verification
system from verifying the implementations of distributed
protocols. Here, we overcome this by applying decidable
decomposition.

We observe in our evaluation that the human effort needed
to achieve decidable decomposition is modest, and follows
well known modular design principles. For example, in our
implementation of Multi-Paxos, we decompose the proof
into an abstract protocol and an implementation, where each
component’s verification condition falls in a (different) de-
cidable fragment.

At the end of the process, we compile the verified sys-
tem to executable code (which uses a small set of trusted
libraries, e.g., to implement a built-in array type). Our prelim-
inary experience indicates that this can be used to generate
reasonably efficient verified distributed systems.

Contributions The contributions of this paper are:
1. A newmethodology, decidable decomposition, that uses

existing modularity principles to decompose the ver-
ification into lemmas proved in (different) decidable
logics.

2. A realization of this methodology in a deductive verifi-
cation tool, Ivy, that supports compilation to C++ and
discharges verification conditions using an SMT solver.
The fact that all verification conditions are decidable
makes the SMT solver’s performance more predictable,
improving the system’s usability and reducing verifi-
cation effort.

3. An application of the methodology to distributed sys-
tems, resulting in verified implementations of two pop-
ular distributed algorithms, Raft and Multi-Paxos, ob-
taining reasonable run-time performance. We show
that proofs of these systems naturally decompose into
decidable sub-problems. Our experience is that verify-
ing systems in decidable logics is significantly easier
than previous approaches.

2 Overview

In this section, we motivate and demonstrate our key ideas
on a simple example.

2.1 Example: Toy Leader Election

Figure 1 shows pseudocode for a node that participates in a
toy leader election protocol, in which a finite set of nodes
decide on a leader. The set of nodes is a parameter of the
system, which is determined at run time and remains fixed
throughout each run of the protocol. Each node may propose
itself as a candidate by sending a message to all nodes. Nodes
vote, by sending a response message, for the first candidate
from which they receive a message. A leader is elected when
it receives a majority of the votes. This protocol will get
stuck in many cases without electing a leader. However, it
suffices to demonstrate our verification methodology, since
it is safe, i.e., at most one leader is elected. Furthermore, a
variant of this protocol is an essential ingredient of both Raft
and Multi-Paxos, which is used in many production systems,
as well as in our evaluation.
The goal of the verification is to show that at most one

leader is elected. Despite the simplicity of the property and
the code, existing verification techniques cannot automati-
cally prove that the code is correct when executed by an un-
bounded number of nodes communicating via asynchronous
channels. Even when the code is annotated with invariants,
the corresponding verification conditions are expressed in

663

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1 // spec: at most one node

2 // sends leader_msg

3

4 alreadyvoted := false
5 voters := ∅
6 upon client_request() do {
7 if ¬alreadyvoted {
8 send request_vote_msg(self)
9 }
10 }

11 upon recv(msg) do {
12 if msg.type = request_vote_msg
13 ∧¬alreadyvoted {
14 alreadyvoted := true;
15 send vote_msg(self,msg.src)
16 } else if msg.type = vote_msg {
17 voters := voters ∪ { msg.src}
18 if |voters | > N /2 {send leader_msg(self)}
19 }
20 }

Figure 1. Toy Leader Election pseudocode.

undecidable logics. As a result, checking them with existing
theorem provers such as Z3 [11] often results in divergence,
and behaves unpredictably in general. Indeed, previous veri-
fication efforts in the systems community identified this as
a major hurdle for verification [18]. The complexity arises
due to the combination of arithmetic, set cardinalities (e.g.,
number of nodes that voted for a candidate), and quantifiers
in the invariant that quantify over unbounded domains (e.g.,
expressing the fact that for every two nodes at most one is a
leader), especially non-stratified quantifier alternations (see
Section 3.2), which give rise to potentially infinitely many
instantiations.

2.2 Approach

In this paper we present a verification methodology based
on decidable reasoning. We use it to develop and verify im-
plementations of distributed systems, whose performance is
similar to other verified implementations (e.g. [46]). Rather
than starting with an existing implementation (e.g., in C),
we define a simple imperative language which permits effec-
tive (decidable) reasoning on one hand, and straightforward
compilation to efficient C++ code on the other hand.

Ourmethod leveragesmodularity in the assume-guarantee
style for decidable reasoning, by structuring the correctness
proof such that different parts of the proof reason about
different aspects of the system, and at different abstraction
levels, enabling each of them to be carried out in (possibly dif-
ferent) decidable logics. The decomposition has two benefits.
First, it allows to reduce quantifier alternations, and elim-
inate bad quantification cycles. Second, it allows to check
the verification conditions of each module using a different
background theory (or none).

2.3 Modular Formulation

We illustrate our methodology on the Toy Leader Election
example, to verify that at most one leader is elected using
decidable reasoning. Our formulation of the system consists
of three modules: toy_protocol, toy_system, and nset. The
interplay between the modules and the decidable fragments
in which they are verified are depicted in Figure 2 (the frag-
ments are defined in Section 3); their code is listed in Figures 3
to 5. The code is written in Modular Decidable Language

use

toy_system

toy_protocol

array
int

node

EPR

EPR

nset

FAU

Figure 2. Modules and
built-in types used for
verifying the toy exam-
ple. Dashed box denotes
a ghost module. Each
module is annotated with
the decidable fragment in
which it is verified.

(MDL) Ð an illustrative programming language enabling
modular decidable verification.

Each module should be viewed as a proof unit, which con-
sists of (1) declarations and definitions of types and state
components, which may be interpreted using interpret dec-
larations, (2) declarations of other modules and their invari-
ants that are used by themodule, specified by the uses clause,
(3) a module invariantQ , given by all invariant declarations
in the module, (4) procedures with pre-post specifications,
specified by requires and ensures declarations (an unspec-
ified condition is true by default), and (5) declaration of the
module’s initial state, either with init declarations or with
an init() procedure. Intuitively, a module is correct if all its
procedures satisfy their pre/post specification, and also main-
tain the module invariant, assuming that the used modules
are themselves correct. The key property of the modular for-
mulation is that verification conditions generated for each
module fall into decidable fragments (see Section 2.4), which
allows predictable automation.
We elaborate on the modules of the Toy Leader Election

example in Sections 2.3.1 to 2.3.3. Roughly speaking:
(i) The nset module defines (and verifies) a data type which

encapsulates sets of nodes under a first-order interface, and
hides the low-level implementation. This allows other mod-
ules to treat sets of nodes as an opaque type, relying only on
the first-order interface, so their verification can be carried
out in uninterpreted first-order logic. Verifying that the nset
module satisfies its interface is carried out in a suitable the-
ory. The first-order interface includes a predicate that tests if
a set of nodes forms a majority, along with the property that
any two majorities intersect, which is crucial for the proof
of the protocol.
(ii) The toy_protocol module defines (and verifies) an ab-

stract model of the protocol, eliding some of the implemen-
tation details. This is in line with the common practice of
developing a system in an evolutionary process: starting
with a design, and then gradually developing an efficient
implementation. Here this practice serves a different pur-
pose; namely, the toy_protocol captures the protocol design
and its correctness in a ghost object, which is verified sepa-
rately and serves as a lemma for proving the implementation.
This provides a natural way to decompose the verification
problem, and as we shall see, to avoid quantifier alternation
cycles.

664

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

1 ghost module toy_protocol uses nset, nset.majorities_intersect {
2 relation voted : node, node
3 relation isleader : node
4 variable quorum : nset.t
5 init ∀n1, n2 . ¬voted(n1, n2)

6 init ∀n .¬isleader(n)
7 invariant one_leader = ∀n1, n2 . isleader(n1) ∧ isleader(n2) → n1 = n2

8 invariant ∀n, n1, n2 . voted(n, n1) ∧ voted(n, n2) → n1 = n2

9 invariant ∀n : node. isleader(n) →
(

nset.majority(quorum) ∧

10 ∀n′ : node. nset.member(n′, quorum) → voted(n′, n)
)

11 procedure vote(v : node, n : node) {
12 requires ∀n′ .¬voted(v, n′)
13 voted(v, n) := true
14 }
15 procedure become_leader(n : node, s : nset.t) {
16 requires nset.majority(s) ∧ ∀n′ : node. nset.member(n′, s) → voted(n′, n)
17 isleader(n) := true
18 quorum := s
19 }
20 }

Figure 3. Protocol module for Toy Leader Election.

(iii) The toy_system module specifies (and verifies) the
system implementation, using both the data type defined by
nset (relying on its first-order specification) and the abstract
protocol defined by toy_protocol (as ghost code) to obtain a
verified executable implementation.

2.3.1 Abstract Protocol Module

Figure 3 lists the module that formalizes the abstract leader
election protocol. This is a ghost module, which is only used
for the sake of the proof. The module contains two muta-
ble relations that define its state: voted(n1,n2) captures the
fact that n1 voted for n2, and isleader(n) means node n is an
elected leader. The initial state of the module specifies that
both relations are empty. The state also includes a variable
quorum, that remembers the last voting majority observed.
The abstract protocol provides a global invariant (denoted
by invariant), which states that there is at most one leader.
This is similar to a class invariant / object invariant in modu-
lar reasoning. Next, the module contains a proof that all of its
reachable states satisfy the global invariant, by an inductive
invariant. When proving this module, the majority intersec-
tion invariant of the nset module is used, as indicated by the
uses clause in line 1.

The module also provides two procedures that define the
abstract protocol steps. Each procedure specifies a pre con-
dition. The vote(n1,n2) procedure models a vote by n1 for
n2, and its precondition is that node n1 has not yet voted.
The become_leader(n,s) procedure models the election of n
as a leader, and its precondition requires that all nodes in s
voted for n, and that s is a majority. Note that this module is
abstract in the sense that it abstracts network communica-
tion and uses a global view of the system. In particular, the
become_leader does not specify how a node learns that it
received a majority of votes.

1 system module toy_system uses nset, toy_protocol, toy_protocol.one_leader {
2 message request_vote_msg : node
3 message vote_msg : node, node
4 message leader_msg : node
5 // spec: at most one node sends leader_msg :
6 invariant safe = ∀n1, n2 . leader_msg(n1) ∧ leader_msg(n2) → n1 = n2

7

8 relation alreadyvoted : node
9 function voters : node→ nset.t
10 procedure init(self : node) {
11 alreadyvoted(self) := false
12 voters(self) := nset.emptyset()
13 }
14 procedure request_vote(self : node) {
15 send request_vote_msg(self)
16 }
17 procedure cast_vote(self : node, n : node) handles request_vote_msg(n) {
18 if ¬alreadyvoted(self) {
19 alreadyvoted(self) := true
20 send vote_msg(self, n)
21 toy_protocol.vote(self, n)
22 }
23 }
24 procedure receive_vote(self : node, n : node) handles vote_msg(n, self) {
25 voters(self) := nset.add(voters(self), n)
26 if nset.majority(voters(self)) {
27 send leader_msg(self)
28 toy_protocol.become_leader(self, voters(self))
29 }
30 }
31 // inductive invariant for the proof:

32 invariant ∀n1, n2 . toy_protocol.voted(n1, n2) ↔ vote_msg(n1, n2)

33 invariant ∀n1, n2 . nset.member(n1,voters(n2))→ toy_protocol.voted(n1,n2)

34 invariant ∀n . leader_msg(n) ↔ toy_protocol.isleader(n)
35 invariant ∀n1, n2 . ¬alreadyvoted(n1) → ¬toy_protocol.voted(n1, n2)

36 open toy_protocol
37 }

Figure 4. System module for Toy Leader Election.

2.3.2 Concrete Implementation Module

Figure 4 lists the concrete system implementation. We con-
sider systems in which a finite (but unbounded) set of nodes
run the same code, and exchange messages. For simplicity,
we assume all messages are broadcast to all nodes. Our net-
work model also allows message dropping, duplication and
reordering. To define the system implementation, we first
define the message types. Lines 2 to 4 define three message
types: request_vote_msg that a node uses to propose itself as
a leader, vote_msg that a node sends to vote for a candidate,
and leader_msg that a node uses to announce it is elected as
the leader. The first field of each message is its source node.
The invariant on line 6 specifies the desired specification, i.e.,
that only one node ever issues a leader_msg message. This
is the ultimate guarantee provided by the implementation,
and it is the only line of trusted specification in the exam-
ple. Namely, one has to trust that this invariant captures
the intended property (e.g., by careful inspection), but the
fact that the implementation maintains it is mechanically
verified. The declarations are followed by the code to be run
on each node. This code (lines 8 to 30) defines the local state
of each node, as well as procedures that can be executed in

665

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1 module nset {
2 type t
3 relation member : node, t
4 relation majority : t
5 function card : t→ int
6

7 interpret t as array<int,node>
8 interpret member(n, s) as ∃i .0 ≤ i < array.len(s) ∧ array.value(s, i, n)
9 interpret majority(s) as card(s) + card(s) > card(node.all)
10

11 invariant majorities_intersect = ∀s1, s2 . majority(s1) ∧majority(s2) →
12 ∃n . member(n, s1) ∧member(n, s2)
13

14 procedure emptyset() returns s:t {
15 ensures ∀n . ¬member(n, s)
16 s := array.empty()
17 }
18 procedure add(s1 : t, n : node) returns s2 : t {
19 ensures ∀n′ . member(n′, s2) ↔ (member(n′, s1) ∨ n

′
= n)

20 if member(n, s1) then { s2 := s1 } else { s2 := array.append(s1 , n) }
21 }
22 procedure init() {
23 card := λx .0;
24 for 0 ≤ i < array.len(node.all) {
25 invariant ∀s1, s2 .(∀n .¬(member(n, s1) ∧member(n, s2))) →
26 card(s1) + card(s2) ≤ card(node.all)

27 card := λx .
(

(card(x) + 1) if member(array.get(node.all, i), x) else card(x)
)

28 }
29 }
30 }

Figure 5. The nset module for node sets, proving the major-
ity intersection property.

response to client requests, or procedures that are message
handlers (specified by the handles declaration), and exe-
cuted upon receiving a message from the network. The state
components are defined as functions (or relations) whose
first argument is a node, so that f (n) denotes the local state
of node n. Similarly, all procedures receive as their first argu-
ment the self identifier of the node that runs them. Since the
system module is going to be compiled into an executable
code that runs on each node, we syntactically enforce that
each node may only access and modify its own local state.
We note that the toy_system module makes use of the

nset module to maintain sets of voters, and uses a major-
ity test (line 26). It also makes calls into the ghost module
toy_protocol (lines 21 and 28). This allows to establish an
invariant that relates the state of the concrete module and
the abstract module (lines 32 to 35), and use the proven
invariant of the abstract module as a lemma for proving
the concrete implementation. This is indicated by the uses
clause, which declares use of the toy_protocol.one_leader
invariant (line 1).

2.3.3 Node Set Module

Figure 5 lists the code for the nset module. This module
defines a data structure for storing sets of nodes, with op-
erations for adding to a set and testing whether a set is a

majority. To do so, it defines a type t, whose internal inter-
pretation is MDL’s built-in array, as declared in line 7. Sets
are created using the emptyset and add procedures, which
provide a naive implementation of a set, stored as an array
of its elements. The module defines the member relation,
and provides it with an interpretation via an interpret dec-
laration in line 8. As we shall see, this definition creates an
executable membership test that is translated to a loop that
scans the array.
Most importantly for verifying the leader election mod-

ules, the nset module provides the interpreted majority pred-
icate, with the key property that any two majorities intersect.
This is stated by the majorities_intersect invariant (line 11).
Intuitively, a set is a majority if its cardinality is more than
half the total number of nodes. In Figure 5, the majority pred-
icate is interpreted using the card function to compute the
cardinality of a set of nodes, and the built-in value node.all,
which is an array with the special semantics that it contains
all nodes. The card function computes the cardinality of a
set of nodes, and it is constructed in the init() procedure
of the nset module in a way that establishes the majority
intersection property. The proof is by induction, manifested
in the loop invariant in line 25.

We note that the loop in init() constructs card via a nesting
of N function closures (where N is the number of nodes).
This definition of card allows an easy proof of the majority
intersection property (the λ at line 27 is eliminated from
verification conditions by β-reduction, resulting in first-order
formulas; see Section 4.6). A more efficient implementation
uses array.len (underlying array length) instead of card to
determine if a set is a majority. This implementation is also
provable in our system, but requires additional inductive
invariants to prove that card and array.len coincide, and we
do not present it here in the interest of simplicity.

2.4 Modular Verification in Decidable Fragments

We now explain how verification conditions are generated
for each module, and how they are checked under (possi-
bly different) theories. We use two decidable fragments: the
effectively propositional (EPR) fragment [41] which allows
stratified quantifier alternations, and the finite almost unin-
terpreted (FAU) fragment [17] which includes linear integer
arithmetic in a restricted way.

VerificationConditionGeneration Recall that eachmod-
ule declares the modules and invariants it uses in the uses
clause. Based on this, verification conditions are derived au-
tomatically. Each module must provide the following guar-
antees: 1) The module invariant, Q , holds at any initial state.
2) Every procedure in the module establishes its postcondi-
tion and preserves the module invariant Q , and 3) At each
call site, the precondition of the called procedure is estab-
lished. Each module may rely upon the following assump-

tions: 1) Every called procedure establishes its postcondition

666

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

and 2) Every used invariant of another module holds at all
times. The verification condition states that the assumptions
imply the guarantees.
As an example, the verification condition generated for

the become_leader procedure (Figure 3 line 15) is:
(

Qtoy_protocol ∧Qnset.majorities_intersect ∧

(

majority(s) ∧ ∀n′.member(n′,s) → voted(n′,n)
)

)

→

Qtoy_protocol [(isleader(x) ∨ x = n) / isleader(x) , s / quorum]

where Qtoy_protocol is given by Figure 3 lines 7 to 9 and
Qnset.majorities_intersect is given by Figure 5 line 11. The lat-
ter is used because it appears in the uses clause of the
toy_protocolmodule. The verification condition also includes
the procedure precondition taken from Figure 3 line 16, and
checks that assuming the invariants and the precondition,
the invariant Qtoy_protocol is preserved by the procedure (the
substitutions reflect the assignments of lines 17 and 18).
Optionally, calls to procedures may be inlined (i.e., re-

placed by the procedure body), and we may take the initial
condition of another module as an assumption. If we use
a module in this way, we say the module is opened. As an
example, ghost module toy_protocol is opened in the veri-
fication of toy_system (Figure 4, line 36). This allows us to
establish easily an invariant relating the states of the two
modules. When composing modules, there are additional
conditions required for soundness (e.g., that modules do not
interfere), which are described in Section 4.

Theory Abstractions Recall that every module may in-
clude interpreted types (e.g., int, array) as well as definitions
via interpret declarations. These allow the module to define
its relevant theory. A theory is a (possibly infinite) set of
first-order formulas, which may either be given explicitly
(e.g., the theory of total order), or by using a built-in theory
(e.g., the theory of linear integer arithmetic). The verification
conditions of the module are checked with respect to the
provided theory and definitions. Symbols that are given no
interpretation in the module are treated as uninterpreted,
which may be viewed as a form of abstraction.

For example, when checking the verification condition
of the become_leader procedure given above, the majority
and member relations are treated as uninterpreted relations,
and not according to their definitions from Figure 5 lines 8
and 9. In contrast, when verifying the nset module, these
definitions are used as part of a background theory, which
also includes linear integer arithmetic.

DecidableDecomposition of Toy Leader Election For the
whole picture of our example, observe that the nset mod-
ule uses the int type, which introduces the theory of linear
integer arithmetic. Furthermore, its majorities_intersect in-
variant introduces quantifier alternation from nset.t to node.
The function voters of the toy_system module introduces
a dependency in the opposite direction, as it is a function

from node to nset.t. As a result, had the nset module and its
invariants been inlined within the proof of toy_system, they
would have resulted in verification conditions that combine
arithmetic, quantifier alternation cycles, and uninterpreted
symbols, breaking decidability.
In order to break the bad cycle, we do not directly use

the majorities_intersect invariant of nset in toy_system.
Instead, our proof exploits the toy_protocol module and
its one_leader invariant (which does not introduce depen-
dency from node to nset.t). Namely, the invariant one_leader
is assumed when verifying toy_system, and is verified
separately as part of the toy_protocol module (assuming
the majorities_intersect invariant of nset). In that way,
toy_system only contains functions from node to nset.t,
while toy_protocol only contains dependencies from nset.t
to node, avoiding quantifier alternation cycles.

In terms of theories, the nset module is verified when int is
interpreted using the theory of linear integer arithmetic, and
the nodeset.t type is interpreted as array<int,node> from
our built-in array theory (as explained in Section 4, we en-
code arrays in FAU). Moreover, the member and majority
relations are interpreted by their definitions (Figure 5 lines 8
and 9). The resulting verification conditions for this module
are in FAU.When verifying the toy_protocol and toy_system
modules, sorts and relations (includingmember andmajority)
are uninterpreted. The resulting verification conditions are
in EPR, as the quantifiers in each module are stratified.

We thus see that the separation between the three modules
allows us to obtain decidable verification conditions.

2.5 Compiling to C++ and Runtime System

In order to obtain a verified implementation, Ivy generates
C++ code. During this phase, ghost code (the ghost module
toy_protocol in our example) is sliced out, and every call to a
procedure of a ghost module is treated as skip. The remaining
code is translated to C++, as detailed next.

Translation of Primitive Language Constructs Every
procedure is translated to a C++ function in a straightforward
syntax-directed manner. Control flow constructs are trans-
lated into the corresponding C++ constructs. Interpreted
sorts are given appropriate representations. The built-in
type int is represented by machine integers, arrays are repre-
sented by the STL std::vector template, and record types
are represented by C++ struct.1 Variables of function sort
are represented by pure function closures equipped with a
memo table. Every type in a non-ghost module must have
one of the above as its interpretation.

Arrays in Ivy are immutable, so procedures manipulating
them (e.g., append) return a new array object. For efficient ex-
ecution, the compiler optimizes cases where the modification

1In the current implementation, integer overflow is not addressed.We intend
this to be handled by an efficient bignum package.

667

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

can be implemented in place, which is common in our exam-
ples. In particular, all array manipulations in the Toy Leader
Election example are compiled to in-place modifications.

Ivy code may contain quantified formulas as control flow
conditions (e.g., as the condition of an if statement). In non-
ghost context, these must be of the form ∃i : int. a ≤ i ≤

b ∧ φ (i) or ∀i : int. a ≤ i ≤ b → φ (i). Ivy translates such
conditions into for loops. In the Toy Leader Election example,
this mechanism is used to compile the definition of member
(Figure 5 line 8) to an executable test.

Network & Runtime The generated C++ code is intended
to operate in a distributed setting, where each node runs
the same program, and nodes communicate via message
passing (for simplicity, we assume messages are broadcast
to all nodes). Accordingly, a system module must define the
message types, and the local state and procedures of each
node. The local state relations and functions, and the local
procedures, all have an argument of the built-in type node
as their first parameter, which represents the local node. The
generated C++ code includes variables of the appropriate
type that represent the local state of the node. It also includes
the local procedures which can only access the local state of
the node, and may also send messages. Some procedures are
designated as message handlers.

The generated C++ code is linked to client code to form the
complete application. The client code may call the generated
procedures (such as request_vote in the example) in order
to use the service provided by the verified code.

The generated code also includes an additional shim that
takes care of sending and receiving messages, and firing
timers. Namely, message sending is translated to calls to
appropriate shim functions, and the shim calls message han-
dlers or timeout handlers when messages are received or
timers expire, respectively. The shim also initializes the val-
ues of self and node.all with a node identifier, and an array
of all node identifiers, respectively. This information is ob-
tained at run time from a configuration file or command line
arguments. The operator is trusted to run the system with a
correct configuration, i.e., to run processes with unique id’s,
and to provide each process with a correct list of all other
process id’s and network information (e.g., IP addresses and
ports). Ultimately, the trusted base of the verified system
includes the Ivy verifier and compiler (including Z3), the
implementation of built-in types and the shim, and the oper-
ator’s configuration process.

3 Preliminaries

3.1 Formulas and Theories

We consider many-sorted first-order logic with equality,
where formulas are defined over a set S of first-order sorts,
and a vocabulary Σ which consists of sorted constant sym-
bols and function symbols. Constants have first-order sorts
inS, while functions have sorts of the form (σ1×· · ·σn) → τ ,

where σi ,τ ∈ S. In other words, functions may not be higher-
order. We assume that S contains a sort B that is the sort of
propositions. A function whose range is B is called a relation.
If s is a symbol or term and t is a sort, then s : t represents the
constraint that s has sort t . We elide sort constraints when
they can be inferred. A Σ-structure maps each sort t ∈ S to
a non-empty set called the universe of t , and each symbol
s : t in Σ to a value of sort t .

For a set of formulasT , we denote by Σ(T) the vocabulary
of T , that is, the subset of Σ that occurs in T . A theory T is
a (possibly infinite) set of formulas. We use theories to give
concrete interpretations of the symbols in Σ. For example,
a given sort might satisfy the theory of linear order, or the
theory of arithmetic. In particular:

Definition 3.1. A theory T isV-conservative, whereV ⊂
Σ, if every (Σ \ V)-structure σ can be extended to a Σ-
structure σ ′ such that σ ′ |= T .

Intuitively speaking, a V-conservative theory T can be
used to extend the vocabulary with symbols inV , possibly
defining them in terms of other symbols. We can compose
conservative theories to obtain conservative theories:

Theorem 3.2. If T is a V-conservative theory and T ′ is a

V ′-conservative theory, where Σ(T) andV ′ are disjoint, then

T ∪T ′ is a (V ∪V ′)-conservative theory.

That is, definitions can be combined sequentially, provided
earlier definitions do not depend on later definitions.

3.2 Decidable Fragments

We consider fragments of first-order logic for which checking
satisfiability, or satisfiability modulo a theory (i.e., satisfiabil-
ity restricted to models of a given theory T), is decidable.

Effectively Propositional Logic (EPR) The effectively
propositional (EPR) fragment of first-order logic, also known
as the Bernays-Schönfinkel-Ramsey class is restricted to first-
order formulaswith a quantifier prefix∃∗∀∗ in prenex normal
form defined over a vocabulary Σ that contains only constant
and relation symbols, and where all sorts and symbols are
uninterpreted. Satisfiability of EPR formulas is decidable [30].
Moreover, formulas in this fragment enjoy the finite model

property, meaning that a satisfiable formula is guaranteed to
have a finite model.

A straightforward extension of this fragment allows strat-
ified function symbols and quantifier alternation, as formal-
ized next. The Skolem normal form of a formula is an equisat-
isfiable formula in ∀∗ prenex normal form that is obtained
by converting all existential quantifiers to Skolem functions.
The quantifier alternation graph of a formula is a graphwhose
vertex set isS\{B}, having an edge (s,t) if there is a function
symbol occurring in the formula’s Skolem normal form with
s in its domain and t as its range. Notice that a formula of
the form ∀x : s . ∃y : t . φ has an edge (s,t) in its quantifier

668

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

alternation graph, since the Skolem function for y is of sort
s → t . A bad cycle in the quantifier alternation graph of φ is
one containing a sort s such that some variable of sort s is
universally quantified in the Skolem normal form of φ.
A formula is stratified if its quantifier alternation graph

has no bad cycles. Notice that all EPR formulas are stratified
(since all the Skolem symbols are constants) and so are all the
quantifier-free formulas. A formula φ is virtually stratified

if there is any consistent assignment of sorts to symbols in
Σ(φ) under which φ is stratified. As an example, the formula
∀x : s . ∃y : t . f (x) = y is stratified, since the quantifier
alternation graph contains only the edge (s,t). On the other
hand, ∀x : s . ∃y : t . f (y) = x is not stratified, because the
Skolem function for y has sort s → t , while f has sort t → s .
The formula∀x : s . f (д(x) : t) = y : s is not stratified, sinceд
has sort s → t while f has sort t → s . However, it is virtually
stratified, since we can resort it as ∀x : s . f (д(x) : t) = y : u.
Also, notice that ∀x : s . f (д(x) : t) = y : t is stratified even
though there is a cycle containing sort t , because this cycle
does not contain a universally quantified variable.

The extended EPR fragment consists of all virtually strati-
fied formulas. The extension maintains both the finite model
property and the decidability of the satisfiability problem
(this is a special case of Proposition 2 in [17]).

Finite Almost Uninterpreted Fragment (FAU) Formulas
in the almost uninterpreted fragment [17] are defined over
a vocabulary that consists of the usual interpreted symbols
of Linear Integer Arithmetic (LIA), equality and bit-vectors,
extended with uninterpreted constant, function and relation
symbols. In this work, we will not use bit-vectors. We recall
that LIA includes constant symbols (e.g., 1,2, . . .), function
symbols of linear arithmetic (e.g., ł+ž, but not multiplica-
tion), and relation symbols (e.g., ł≤ž), all of which are inter-
preted by the theory, which includes all formulas over this
vocabulary that are satisfied by the integers. A formula (over
the extended vocabulary) is in the essentially uninterpreted
fragment if variables are restricted to appear as arguments
to uninterpreted function or relation symbols. The almost

uninterpreted fragment also allows variables to appear in
inequalities in a restricted way (for example, inequalities
between a variable and a ground term are allowed). For ex-
ample ∀x : int. x + y ≤ z, is not in the fragment, since the
variable x appears under the interpreted relation ≤. However
∀x : int. f (x) + y ≤ z is allowed, as is ∀x : int. x ≤ y.
The finite almost interpreted fragment (FAU) is defined

as the set of almost interpreted formulas that are stratified
as defined in [17]. Satisfiability of FAU modulo the theory is
decidable. In particular, in [17] a set of groundings is defined
that is sufficient for completeness. In FAU, this set is finite,
which implies decidability. Moreover, it implies that every
satisfiable formula has a model in which the universes of the
uninterpreted sorts are finite. This is useful for providing

counterexamples. The FAU fragment also subsumes the array
property fragment described in [6].

Of particular importance for our purposes, the SMT solver
Z3 [11] is a decision procedure for the FAU fragment. This is
because its model-based quantifier instantiation procedure
guarantees to eventually generate every grounding in the
required set. This gives us a rich language in which to express
our verification conditions, without sacrificing decidabilty.

4 Modular Proofs

In this section we describe an illustrative modular reasoning
system, using a very simple procedural language as a model
of MDL. This system is not as rich as the system actually
used in the Ivy tool but is sufficient to capture the proof
strategies we apply here.

4.1 A Model Language

Let Σ be a vocabulary of non-logical symbols. The set of
propositions (terms of Boolean sort) over Σ is denoted P.

4.1.1 Statements

The statements in our model language are defined as follows:

Definition 4.1. LetN be a set of procedure names andVP ⊆

Σ a set of program variables. The program statements S are
defined by the following grammar:

S ::= c : τ := t : τ | (S;S) | while p S

| if p S S | call n | skip

where c is inVP , t a term over Σ, τ a sort, p ∈ P, and n ∈ N .

The mutable program variables VP are a subset of Σ. The
statements have the expected semantics. For now, program
variables c are restricted to logical constants, and can only
be assigned terms t of first-order types. We will relax this
restriction in Section 4.6.

4.1.2 Procedures and Modules

The Hoare triples H are denoted {φ} σ {ψ }, where φ,ψ ∈ P
and σ ∈ S. Our notion of procedure definition is captured
by the following definition:

Definition 4.2. A context is a partial function fromN toH .
A context is denoted by a comma-separated list of procedure
definitions of the form n:=H , where n ∈ N and H ∈ H , such
that the names n are unique.

Intuitively, a context is a collection of procedure defini-
tions with corresponding pre/post specifications. In MDL,
the precondition φ of a procedure is introduced by the re-
quires keyword and the postcondition by ensures.

A module is a procedural program that exports procedure
definitions to its environment and has a determined set of
initial states. In the sequel, if f is a partial function, we will
write pre(f) for its pre-image and img(f) for its image. If P

669

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

is a context, we will write called(P) for the set of names n
such that łcall nž occurs in P .

Definition 4.3. A module is a tuple (P ,E, I ,Q), where:

• P is a context.
• E ⊆ pre(P) is the set of exports.
• I ⊆ P is the initial condition of the module.
• Q ⊆ P is the module invariant.

That is, P gives a set of procedure definitions with pre/post
specifications, E gives the subset of these definitions that
is exported to the environment, I is a set of predicates that
are true in the module’s initial state, and ∧Q is an inductive
invariant that holds between calls to exported procedures.
In the sequel, we often use I to denote ∧I and Q to denote
∧Q . We will write PM , EM , IM , QM , respectively, for the
components of module M . In MDL, a module declaration
creates a module, with all procedures exported by default.
The initial condition IM is specified by init declarations. (In
Section 4.6, we allow a module to define an init() procedure
instead of an initial condition.) The invariantQM is given by
the set of invariant declarations in the module.
We define the following operations on modules:

Definition 4.4. LetM = (P ,E, I ,Q) andM ′ = (P ′,E ′, I ′,Q ′)

be modules such that pre(P)∩pre(P ′) = ∅ and Σ(I)∩Σ(I ′)∩
VP = ∅. The composition of M ′ and M , denoted M ′ +M , is
(P ∪ P ′,E ∪ E ′, I ∪ I ′,Q ∪Q ′).

Definition 4.5. For a module M = (P ,E, I ,Q) and a set
E ′ ⊆ N , the restriction of M to E ′, denoted M ↓ E ′, is the
module (P ,E ∩ E ′, I ,Q).

4.2 Axiomatic Semantics

We write P ⊢T {φ}σ {ψ } to denote the judgment that, as-
suming context P and background theory T , if σ starts at
a T -model satisfying φ and terminates in a T -model, then
this model satisfiesψ . In derivation rules, we will drop the
theory T if it is the same for all judgments.

The axiomatic semantics of the statements of our language
is given by the standard rules of Hoare logics:

Cons

T |= (φ ′ ⇒ φ) ∧ (ψ ⇒ ψ ′)
P ⊢T

{

φ
}

σ
{

ψ
}

P ⊢T
{

φ ′
}

σ
{

ψ ′
}

Comp

P ⊢
{

φ
}

σ
{

ψ
}

P ⊢
{

ψ
}

σ ′
{

ρ
}

P ⊢
{

φ
}

(σ ;σ ′)
{

ρ
}

While
P ⊢
{

φ ∧ p
}

σ
{

φ
}

P ⊢
{

φ
}

while p σ
{

φ ∧ ¬p
}

If

P ⊢
{

φ ∧ p
}

σ
{

ψ
}

P ⊢
{

φ ∧ ¬p
}

σ ′
{

ψ
}

P ⊢
{

φ
}

if p σ σ ′
{

ψ
}

Assign
P ⊢
{

φ [t / c]
}

c := t
{

φ
}

Skip
P ⊢
{

φ
}

skip
{

φ
}

Inline
P ⊢
{

φ
}

σ
{

ψ
}

n:=
{

φ ′
}

σ
{

ψ ′
}

,P ⊢
{

φ ∧ φ ′
}

call n
{

ψ ∧ψ ′
}

The first is the so-called łrule of consequencež. The remain-
der, respectively, give the semantics of sequential composi-
tion, while loops, conditionals, assignments and łskipž. The
last rule is the Inline rule that gives the semantics of non-
recursive procedure calls: any fact that can be proved about
the body of procedure n in a given context can be used at a
call site of n. Notice that we must still satisfy any specified
pre-condition φ ′ and may use the specified post-conditionψ ′.
In effect, this allows us to inline a procedure definition at a
call site. This is relatively complete for non-recursive pro-
grams, which include the examples we treat here.
We will write I ; P ⊢ M to represent the judgment that, in

context P , if formulas I hold initially, then moduleM main-
tains its invariant and satisfies its pre/post specifications. It
is assumed that the environment only calls M’s exported
procedures, and otherwise never modifies its program vari-
ables. We elide I or P if they are empty sets. The axiomatic
semantics of modules is given by the following Module rule:

Module

I , IM |= QM

for n:={φ} σ {ψ } in PM :
P ,PM ⊢ {φ} σ {ψ } if n ∈ called(PM)

P ,PM ⊢ {QM ∧ φ} σ {QM ∧ψ } if n ∈ EM

I ; P ⊢ M

In this rule, QM is an inductive invariant that holds between
calls to exported procedures. It must hold in the initial states
and be preserved by all exported procedures. In addition,
internally called procedures must satisfy their specifications
without assuming the invariant, since the invariant may be
violated during execution of the module’s procedures.

4.3 Rules for Decidable Decomposition

The rules defined in Section 4.2 provide the full axiomatic
semantics. In particular, they enable to verify a program
which consists of multiple modules, say M1, . . . ,Mn , and
exports procedures E to its environment, by proving ⊢ (M1 +

. . . +Mn) ↓ E. However, the class of verification conditions
generated is undecidable. In this section, we provide derived
inference rules that can be used to decompose the proof such
that the verification conditions are in a decidable fragment.
For simplicity, we only present the rules needed for the Toy
Leader Election example. Our implementation includes more
flexible rules that are similar in spirit.
First, we introduce a rule that allows to verify a proce-

dure call without inlining the procedure’s body, by using the
assumption that the procedure satisfies its pre/post specifi-
cation at the call site:

670

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

Theorem 4.6. The following rule can be derived:

Call
n:=
{

φ
}

σ
{

ψ
}

,P ⊢
{

φ
}

call n
{

ψ
}

The next rules allow to verify the composition of modules
by verifying the individual modules. We begin by defining
some notation.

Definition 4.7. The callset calls(M ,P) of moduleM in con-
text P is the least set of procedures n such that either n
is exported from M , or n is in pre(PM ∪ P) and n is called
from calls(M ,P). Formally, calls(M ,P) = LFP. λX . EM ∪X ∪

(called (X)∩pre(PM∪P)). The refset ref(M ,P) is the subset of
VP occurring in calls(M ,P) or in IM . The modset mod(M ,P)
is the subset of VP assigned in calls(M ,P), or occurring in
IM . ModuleM is said to interfere with moduleM ′ in context
P , denoted M ,P { M ′, if mod(M ,P) ∩ Σ(QM ′) , ∅ or if
called(calls(M ,P)) ∩ pre(PM ′) ⊈ EM ′ .

In other words,M interferes withM ′ if it either modifies
a variable occurring in the invariant of M ′, or if it calls an
internal procedure ofM ′. ModuleM can interfere withM ′

directly, or by calling procedures defined in the context P .
To export an invariant from one module to another, we

introduce two notations. If M is a module and Γ is a set of
formulas, we sayM[Γ] is the module that results from con-
joining ∧Γ to the postcondition of every exported procedure
ofM . On the other hand, [Γ]M results from conjoining ∧Γ
to the precondition of every exported procedure ofM .

Now we can derive a compositional rule that allows us to
verify a serviceM ′ layered on a serviceM , while assuming

the invariants and pre/post specifications ofM .

Theorem 4.8. The following rule can be derived:

Layer

I ; P ⊢ M
I ,Θ; P ,PM[Γ] ⊢ [Γ]M

′

I ; P ⊢ (M +M ′) ↓ E

M ′ ↓ E,P ̸{ M

M ↓ E,P ̸{ M ′

Γ ⊆ QM

Θ ⊆ IM

Ignore for the moment the expressions in square brackets.
The rule states that, to verifyM ′ layered onM , we first verify
M , then verify M ′ assuming the proved specifications of the
exported procedures of M . Intuitively, this works because
external calls to one module cannot invalidate the invariant
of the other. Note the asymmetry, however. ModuleM must
be proved in context P , which means that it contains no
calls to procedures outside of P , and in particular, no call-
backs intoM ′. At a call-back, the invariant ofM ′ would not
hold, violating the precondition under whichM ′ is verified.
Technically, this rule can be derived by annotating every
statement of M ′ with the invariants of M . The rule also
allows us to use initial conditions ofM .

The bracketed expressions allow us to assume the proved
invariants ofM when provingM ′. We do this by assuming
these invariants on entry to every exported procedure ofM ′

and on exit of every exported procedure ofM .

4.4 Ghost Modules and Slicing

Definition 4.9. If P is a context, the slice of P , denoted
slice(P) is the set of procedure definitions which contains
n:={true}skip{true} for each n:={φ}σ {ψ } in P . IfM is a mod-
ule, slice(M) denotes (slice(PM),EM ,∅,∅).

The following derived rule can be used to slice out a łghostž
module that is used only for the purpose of the proof. We
say a module M is invisible to M ′ in context P , denoted
M ,P ̸֒ → M ′, if M ,P ̸{ M ′ and mod(M ,P) ∩ ref(M ′,P) = ∅
and IM isVP -conservative (definition 3.1) and every exported
procedure ofM ′ terminates in context P , starting in all states
satisfying its precondition.

Theorem 4.10. The following rule can be derived:

Slice
P ⊢ (M +M ′) ↓ EM ′

P ⊢ (slice(M) +M ′) ↓ EM ′
M ,P ̸֒ → M ′

To prove termination for the examples presented here,
it suffices to verify that there is no recursion and that PM
contains no łwhilež statements (Ivy supports proof of termi-
nation using a ranking). We must also show that every model
of the theory has an extension to the program variables sat-
isfying IM . In practice we must prove this using Theorem 3.2,
which means that IM must be a conjunction of a sequence
of definitions.
The invisible moduleM can be used like a lemma in the

proof ofM ′. That is, we make use of its properties and then
discard it, as we did with the abstract protocol model in Toy
Leader Election.

4.5 Theory Abstractions

To allow us to abstract theories, we add one derived rule
Theory to our system:

Theorem 4.11. The following rule can be derived:

Theory

T ,T ′ |= T ′′

P ⊢T∪T ′′
{

φ
}

σ
{

ψ
}

P ⊢T∪T ′
{

φ
}

σ
{

ψ
}

In other words, what can be proved in a weaker theory can
be proved in a stronger theory. This allows us, for example,
to replace the theory of arithmetic with the theory of linear
order, or to drop function definitions that are not needed
in a given module. In Toy Leader Election, for example, we
dropped the theory LIA and the definition of nset.majority
when verifying the abstract model and the implementation,
but used them when verifying the nset module.

4.6 Language Extensions

In this section we introduce some useful extensions to the
basic language which, while straightforward, cannot be de-
tailed here due to space considerations.
Though we have modeled procedure calls as having no

parameters, it is straightforward to extend the language to in-
clude call-by-value with return parameters. In the following
we assume such an extension.

671

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

We allow assignments of the form f :=λx . e , where f is
function, since the resulting verification conditions can still
be expressed in first order logic [40]. In the compiled code,
the resulting value of f is a function closure. The assignment
f (a):=e is a shorthand for f :=λx . if x = a then e else f (x).
We provide built-in theories for integers and bit vectors

(both with the usual arithmetic operators). In Ivy, these theo-
ries are provided natively by Z3. Finite immutable arrays are
provided as an abstract data type, with functions provided
for length and select, and axiomatically specified procedures
for update and element append. For each finite sort τ (such
as node in Toy Leader Election) the language provides an
array constant τ .all that contains all elements of sort τ . We
used this feature to define the notion of a majority of nodes
in Toy Leader Election.
A moduleM may have a special initialization procedure

M .init() that is called by the environment before any ex-
ports. In this case, the Module rule is modified to require
that this procedure establishes the module invariant with no
precondition (as it does, for example, in the nset module).

4.7 Modeling Network Communication

For simplicity, we will introduce only a model of a broadcast
datagram service, as used in Toy Leader Election. Other
services can be modeled similarly. For each sort µ of mesages
transmitted on the network, we introduce an abstract relation
sent(m : µ) to represent the fact that messagem has been
broadcast in the past. We add to the language a primitive
łsendm : µž whose semantics is defined by the following
rule:

Send
P ⊢
{

φ
}

sent(m : µ):=true
{

ψ
}

P ⊢
{

φ
}

sendm : µ
{

ψ
}

That is, the effect of łsendmž is to add messagem to the
set of broadcast messages of sort µ. A module using net-
work services for sort µ exports a procedure łrecvµ ž that is
called by the network. This procedure takes two parameters:
p : pid to represent the receiving process id and m : µ to
represent the received message. We use ⊢M M , whereM is
a collection of message sorts, to represent the judgment that
M satisfies its specifications when composed with a network
that handles messages of sorts inM. The semantics of this
judgment is defined by the following rule:

Network

sent(m : µ) |=T φ

⊢M
T

M

⊢
M,µ
T

M ↓ (EM \ recvµ)

recvµ ∈ EM
PM (recvµ) = {φ}σ {ψ }

In other words, we can assume that the system calls
recv(p,m) only with messages m that have already been
broadcast. This yields a very weak network semantics, al-
lowing messages to be dropped, reordered and duplicated.
In MDL, we used the keyword handles to indicate which
procedures are used to handle received messages of a given
sort. The keyword system indicates a top-level module, to
which the above rule should be applied.

4.8 Proof of Toy Leader Election

To illustrate the inference rules, we explain how to prove Toy
Leader Election by chaining them. LetM1,M2,M3 be, respec-
tively, the modules nset, toy_protocol and toy_system. First,
we prove ⊢T M1 where theoryT consists of the integer arith-
metic and array theories, and the definitions of the majority
and member relations. Next we prove PM1[Γ] ⊢ [Γ]M

2 (using
the Module and Call rules). Here, Γ is the majority inter-
section invariant of nset. Notice we do not use theory T , to
preserve decidability. We then add theory T using the The-
ory rule, and combine with the above using the Layer rule,
to obtain ⊢T M1

+M2. Then we prove:

IM2 ; P(M1
+M2)[Γ′] ⊢ [Γ

′]M3

Here Γ′ is the invariant of toy_protocol used by toy_system.
By separating the proof of this invariant, we avoided a func-
tion cycle. In this proof, we inline the procedures of the
abstract model M2 and use the Send rule to capture the se-
mantics of message sending. Again using the Theory and
Layer rules, we obtain ⊢T (M1 + M2 + M3) ↓ EM3 . We
use the Slice rule to remove the ghost module, obtaining
⊢T (M1 + slice(M2) +M3) ↓ EM3 . Finally, the network rule
hides the message handlers, giving the conclusion:

⊢MT (M1
+ slice(M2) +M3) ↓

{

request_vote
}

.

This leaves request_vote as the only exported procedure,
which is called in responce to a client request to initiate the
protocol. The result is a verified equivalent to the code of
Figure 1. Note that these steps are not written explicity, and
are inferred from uses, open, ghost, and system directives.

4.9 Concurrency and Parametricity

Thus far, we have considered a purely sequential program
that presents exported procedures to be called by its envi-
ronment and assumes that each call terminates before the
next call begins. This semantics is implicit in Definition 4.3
and the Module rule. In reality, calls with different values
of the process id parameter p will be executed concurrently.
We need to be able to infer that every concurrent execution
is sequentially consistent, that is, it is equivalent to some
sequential execution when only the local histories of ac-
tions are observed. To do this, we use Lipton’s theory of
left-movers and right-movers [31] (similarly to, e.g., Iron-
Fleet [18]). Since this argument does not relate directly to
the use of decidable theories, we only sketch it here.

First, we need to show that any two statements executed
by two different processes, excepting łsendž statements, are
independent. To do this, we require that every exported
procedure have a first parameter p : pid (representing the
process id). We verify statically that every program variable
reference (after slicing the ghost modules) is of the form
f (p, . . .) where p is the process id parameter. Another way
to say this is that all statements except send statements are

672

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

łboth-moversž in Lipton’s terminology. Moreover, by con-
struction, every call from the environment consists of an
optional message receive operation, followed by a combi-
nation of both-movers and sends. Since receive is a right-
mover and send is a left-mover, it follows that every call can
be compressed to an atomic operation, thus the system is
sequentially consistent by construction.
When we compile a module to executable code, we take

the parameter p as a fixed value given at initialization of
the process. We use this constant value to partially evaluate
all program variable references, thus allowing the compiled
code to store the only the state of one process.

4.10 Verification Conditions

We use the inference rules above to generate verification
conditions (VC’s) in the usual manner, as in tools such as
ESC Java [15] and Dafny [28]. These are validity checks
that result from the side conditions of the Module, Network,
and Theory rules, and the standard rule of consequence.
The verifier checks that each VC is in one of our decidable
fragments (taking into account any built-in theories used)
and issues a warning if it is not. The warning may exhibit,
for example, a bad cycle in the quantifer alternation graph.
In case a VC is determined to be invalid by the Z3 prover, the
counter-model produced by Z3 is used to create a program
execution trace that demonstrates the failure of the VC.

5 Evaluation

To evaluate our methodology, we applied it to develop ver-
ified implementations of Raft [38] and Multi-Paxos [26]2.
Both protocols implement a centralized shared log abstrac-
tion, i.e., a write-once map from indices to values, which
can be used to implement a fault-tolerant distributed service
using state machine replication (SMR) [42]. We verify that
no two replicas ever disagree on the committed portion of
the replicated log. We implemented only the basic Raft and
Multi-Paxos protocols, without log truncation, state transfer
to slow replicas, persisting the log to disk, crash recovery,
batching, or application-level flow control.

5.1 Verifying Raft and Multi-Paxos

Raft The Raft protocol operates in a sequence of terms. In
each term a leader is elected in a way that is similar to the
toy leader election protocol presented in Section 2, and the
leader then replicates its log on the other nodes. Our decid-
able decomposition consists of a main module that contains
the core protocol logic, and of a module that separates the
local node state from the main module and exposes only
relations in order to avoid quantifier alternations. To sep-
arate theories, Raft also uses the nset module presented in
Section 2 (for node sets with majority testing), and a module

2The artifact is available at https://www.cs.tau.ac.il/~marcelotaube/

modularity-for-decidability.html

that implements a log data type, internally represented using
Ivy’s built-in arrays. This strategy uses the modular reason-
ing principles explained in Section 4 in a different way than
the strategy used in Section 2 for the Toy Leader Election
example: instead of separating the abstract protocol from
the implementation, it separates the implementation from
the representation of the local state.
The main module contains the message handlers, which

implement Raft’s logic, as well as an inductive invariant that
proves safety. This invariant is proved using the majority
intersection property, which introduces a quantifier alter-
nation edge from node set to node. The state of each node
is naturally represented by a function from node to various
sorts (including node set, e.g., to let each node track its vot-
ers). Combining such functions in the main module would
create quantifier alternation cycles (e.g., between node and
node set). To avoid the cycles, we encapsulate the local state
of nodes in a separate module that exposes only relations.
For example, a node’s current term is concretely represented
by a function t : node→ term, and it is exposed as a relation
r : node, term, intended to capture r (n,x) ≡ (t (n) = x), and
an additional relation that captures t (n) ≥ x .
Verification of both the main module and the local state

module is done in EPR, with log indices and terms abstracted
as linear orders. Crucially, although both modules use EPR,
they use different quantifier alternation stratification orders,
so a non-modular proof would fall outside the decidable
fragment. The modules for node sets and logs are verified
in the FAU fragment, which allows the necessary reasoning
about arithmetic.

Multi-Paxos Our approach to implementing and verifying
Multi-Paxos follows the strategy presented in Section 2 for
the Toy Leader Election example. We separate the abstract
protocol and its proof into a ghost module, and use this
module as a lemma for proving the system implementation.
Similarly to Raft, our Multi-Paxos implementation uses

the nset module, which provides an abstract data type of
node sets with majority testing. However, the majority inter-
section property (Figure 5 line 11) is used only in the proof
of the abstract protocol, and is not used when verifying the
implementation module. Therefore, there is no quantifier
alternation edge from quorum to node in the VC’s of the
implementation module, and, contrary to Raft, there is no
need to abstract the local state of the nodes using relations.

5.2 Verification Effort

The Raft verification took approximately 3 person-months.
The code and proof of sum up to 840 lines, among which
300 consist of invariants and ghost code. This gives a proof-
to-code ratio of 0.6 for Raft. Obtaining the Multi-Paxos im-
plementation from the abstract protocol (which was already
proved in [39]) took approximately two person-months of
work. The Multi-Paxos code and proof sum up to 789 lines,

673

https://www.cs.tau.ac.il/~marcelotaube/modularity-for-decidability.html
https://www.cs.tau.ac.il/~marcelotaube/modularity-for-decidability.html

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

166 of which consist of invariants and ghost code. This gives
a proof-to-code ratio of 0.3 for Multi-Paxos. Ivy success-
fully discharges all VC’s of both Raft and Multi-Paxos in
few minutes on a conventional laptop. During the develop-
ment, Ivy quickly produced counterexamples to induction
and displayed them graphically, which greatly assisted in
the verification process.

For comparison, IronFleet’s IronRSL [18] implementation
is part of a verification effort of 3.7 person-years (which
also includes IronKV, a verified key-value store). Exclud-
ing generic libraries such as verified serialization code and
liveness proofs, which are not verified in the Ivy implemen-
tations, IronRSL consists of roughly 3,000 implementation
and 12,000 proof SLOC. This gives a proof-to-code ratio of 4.
IronFleet’s VC checking was performed on cloud servers to
obtain verification times acceptable for interactive use.
As evidenced by its larger code-base, IronRSL includes

more features than the Ivy implementations presented: log
truncation, batching, and state-transfer are part of IronRSL
(however IronRSL does not support crash recovery). More-
over, more properties are verified compared to the Ivy im-
plementations: IronFleet verifies the network serialization
and deserialization code, some liveness properties, and the
model includes resource bounds (e.g., integer overflows).

The Verdi proof of the Raft protocol [46] consists of 50,000
proof and 530 implementation SLOC, and required several
person-years. Among those 50,000 lines, most are devoted
to manual proofs of lemmas directly required for the Raft
verification, and are thus not immediately generalizable to
other protocols. Generic pieces of code, such as the network
semantics, make up less than 5% of the code base.

5.3 Verified System’s Performance

Our implementations of Raft and Multi-Paxos are compiled
by Ivy to C++, and the resulting code is linked with several
trusted libraries, including a low-level networking interface
based on TCP using non-blocking sends. In order to evaluate
the performance of these verified replication protocols, we
implemented a key-value store that can use either proto-
col internally. Unverified components handle the key-value
store state machine and client communication on top of the
verified replication library. The unverified portion consists
of 785 SLOC of C++. We benchmarked the performance of
these systems against that of two other Raft-based key-value
stores: vard [45], a similar verified system, and etcd [10],
an unverified, production-quality system. Our goal in these
experiments is to show that systems developed with our
decidable verification methodology achieve comparable per-
formance to existing systems.
We benchmarked all systems on a cluster of three Ama-

zon EC2 m4.xlarge nodes, each with 4 (virtual) CPU cores
and 16GB of RAM. The cluster served 16 closed-loop client
processes running on a fourth m4.xlarge node. The client

System Throughput [req/ms] Latency [ms]

Ivy-Raft 13.5 1.2
Ivy-Multi-Paxos 8.7 1.9
vard 4.4 3.7
etcd 9.2 1.7

Figure 6. Performance of SMR-based key-value stores.

processes sent a randomized 50/50 mix of GET and PUT re-
quests to the servers, and wemeasured the observed through-
put and latency. The results are summarized in Figure 6. We
chose 16 client processes through additional experimentation
that revealed increasing the load further does not increase
throughput, and instead causes the systems to become over-
loaded, resulting in performance degradation and instability.
Since our systems do not include application-level flow con-
trol, they do not gracefully handle overload conditions.
While the performance of all systems is roughly in the

same order of magnitude, there are some expected differ-
ences. The systems vary in the languages, libraries, and data
structures used, and they implement different optimizations.
The Multi-Paxos implementation notifies replicas of decision
by broadcasting łdecidež messages. In Raft, those messages
are instead piggy-backed on subsequent requests, resulting
in more efficient network usage. Unlike our implementa-
tions, vard and etcd were designed to persist data to disk.
We partially mitigated this difference by modifying vard

to disable disk writes and configuring etcd to use a RAM
disk. Our conclusion from this experiment is that systems
verified with decidable decomposition can achieve similar
performance to existing systems (we do not claim that any
of the systems considered outperforms another).
The results above were obtained while the systems were

operating normally, i.e., a single elected leader and no failures.
To test their fault tolerance, we also measured our systems
during leader failure and reelection. After startup, we let the
system elect a leader and begin servicing client requests, until
a steady state is reached.We then killed the server process on
the leader node and observed the time required before clients
could be serviced again. In both Raft and Multi-Paxos, the
system recovered in 4-5 seconds. This delay is expected due
to the way timeouts are currently set in our implementation,
and could be improved by additional engineering.

6 Related Work

Fully Automatic Verification Fully automatic verifica-
tion of distributed protocols and systems is usually beyond
reach because of undecidability. Bounded checking is success-
fully used, e.g., in Alloy [21] and TLA+ [27], to check correct-
ness of designs up to certain numbers of nodes. This is useful,
due to the observation that most bugs occur with small num-
bers of nodes. However as observed by Amazon [36] and
others it is hard to scale these methods even for very few,
e.g., 3 nodes. Also many of the interesting bugs occur in

674

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

the implementation. Another approach for automation is
to use sound and incomplete procedures for deduction and
invariant search for logics that combine quantifiers and set
cardinalities [14, 44]. However, distributed systems of the
level of complexity we consider here (i.e., Raft, Multi-Paxos)
are beyond the reach of these techniques. Another direction,
explored in [2], is to verify limited properties (e.g., for ab-
sence of deadlocks), using a sound but incomplete decidable
check. None of the state-of-the-art techniques for fully auto-
matic verification can prove properties such as consistency
for systems implementations. Moreover, when automatic
methods fail, the user is usually left without any solution.

Interactive Verification The IronFleet [18] and Verdi [45]
projects recently demonstrated that distributed systems can
be proved all the way from design to implementation. The
DistAlgo project [7, 32] develops programming methodolo-
gies for interactively verifying distributed systems using
the TLA+ proof system [8]. However, interactive verifica-
tion requires tremendous human efforts and skills. Our work
can be considered as an attempt to understand how much
automation is achievable using modularity. We argue that
invariants provide a reasonable way to interact with veri-
fication tools, since one does not need to understand how
decision procedures such as SMT work. While this work
considers invariant in first-order logic, it may be possible
aplly its principles to richer specification approaches.

Decidable Reasoning about Distributed Protocols

PSync [13] is a DSL for distributed systems, with decidable in-
variant checking in theCL logic [12]. Decidability is obtained
by restricting to the partially synchronous Heard-Of Model.
A partially synchronous model is also used in [1], which de-
velops a decidable fragment that allows some arithmetic with
function symbols and cardinality constraints. The Thresh-
old Automata formalism and the ByMC verification tool
[5, 23ś25] allow to express a restricted class of distributed
algorithms operating in a partially synchronous communica-
tion mode. This restriction allows decidability results based
on cutoff theorems, for both safety and liveness. Recently,
[34] presented a cutoff result for consensus algorithms. This
allows to verify, e.g., the core Paxos algorithm, using a cutoff
bound of 5 processes. However, this work is focused on algo-
rithms for the core consensus problem, and does not support
infinite-state per process, that is needed, e.g., to model Multi-
Paxos and SMR. Compared to these works, our approach
considers a more general setting of asynchronous communi-
cation, and uses more restricted and mainstream decidable
fragments that are supported by existing theorem provers.
This is enabled by our use of modularity. Our approach of
applying modularity to obtain decidability will benefit and
become more powerful as more expressive decidable logics
are developed and supported by efficient solvers.

Modularity in Verification The utility of modularity for
simplified reasoning was already recognized in the semi-
nal works of Hoare and Dijkstra (e.g., [20]). Proof assistants
such as Isabelle/HOL [37] and Coq [4] provide various mod-
ularity mechanisms. Deductive verification engines such as
Dafny [28] and VCC [9] employ modularity to simplify rea-
soning in a way that is similar to ours. The program logic
Disel [43] allows modular verification of distributed systems,
with rules somewhat similar to ours. In [16], a series of trans-
formations are applied to obtain a verified implementation
of Multi-Paxos from single-decree Paxos in a compositional
manner. In this landscape, our chief novelties are the use of
modularity for decidability, and a methodology for modu-
lar, decidable reasoning about distributed systems. We note
that unlike Dafny, Ivy performs syntactic checks to ensure
that verification conditions are in decidable logics. Thus, the
user either receives an error message and corrects the spec-
ification or can be assured that the verification problem is
solvable. Our evaluation demonstrates that our methodology
is useful for verifying complex distributed systems, and that
it drastically reduces the verification effort.

7 Conclusion

Modularity is well recognized as a key to scalability of sys-
tems. This paper shows that modularity enables decidability
of reasoning about real implementations of distributed pro-
tocols. Such implementations involve arithmetic, unbounded
sets of processes, and unbounded data structures. For this
reason, we might expect that reasoning about these systems
would require the use of undecidable logics. We have seen,
however, that by a fairly simple modular decomposition, we
can separate the proof into lemmas that reside in decidable
fragments, which in turn can make the use of automated
provers more predictable and transparent.

Acknowledgements We thank Aurojit Panda, our shep-
herd Adam Chlipala, the anonymous referees, and the anony-
mous artifact evaluation referees for their insightful com-
ments. Padon was supported by a Google PhD fellowship.
This publication is part of projects that have received funding
from the European Research Council (ERC) under the Euro-
pean Union’s Seventh Framework Program (FP7/2007ś2013)
/ ERC grant agreement no. [321174-VSSC], and Horizon 2020
research and innovation programme (grant agreement No
[759102-SVIS]). The research was partially supported by Len
Blavatnik and the Blavatnik Family foundation, the Blavatnik
Interdisciplinary Cyber Research Center, Tel Aviv University,
and the Pazi Fund. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
1655166, and by the United States-Israel Binational Science
Foundation (BSF) grants No. 2016260 and 2012259.

675

Modularity for Decidability PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] Francesco Alberti, Silvio Ghilardi, and Elena Pagani. 2016. Counting

Constraints in Flat Array Fragments. InAutomated Reasoning. Springer,
Cham, 65ś81.

[2] Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and
Ranjit Jhala. 2017. Verifying distributed programs via canonical se-
quentialization. PACMPL 1, OOPSLA (2017), 110:1ś110:27. https:

//doi.org/10.1145/3133934

[3] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2004. A
Decidable Fragment of Separation Logic. In FSTTCS 2004: Foundations

of Software Technology and Theoretical Computer Science, 24th Interna-

tional Conference, Chennai, India, December 16-18, 2004, Proceedings.
97ś109.

[4] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and

Program Development - Coq’Art: The Calculus of Inductive Constructions.
Springer. https://doi.org/10.1007/978-3-662-07964-5

[5] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha
Rubin, Helmut Veith, and Josef Widder. 2015. Decidability of Pa-

rameterized Verification. Morgan & Claypool Publishers. https:

//doi.org/10.2200/S00658ED1V01Y201508DCT013

[6] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s
Decidable About Arrays?. In Verification, Model Checking, and Abstract

Interpretation, 7th International Conference, VMCAI 2006, Charleston,

SC, USA, January 8-10, 2006, Proceedings. 427ś442. https://doi.org/10.

1007/11609773_28

[7] Saksham Chand, Yanhong A. Liu, and Scott D. Stoller. 2016. Formal Ver-
ification of Multi-Paxos for Distributed Consensus. In FM 2016: Formal

Methods: 21st International Symposium, Limassol, Cyprus, November

9-11, 2016, Proceedings 21. Springer, 119ś136.
[8] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan

Merz. 2010. The TLA+Proof System: Building a Heterogeneous Veri-
fication Platform. In Proceedings of the 7th International Colloquium

Conference on Theoretical Aspects of Computing (ICTAC’10). Springer-
Verlag, 44ś44.

[9] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan To-
bies. 2009. VCC: A Practical System for Verifying Concurrent C. In
Theorem Proving in Higher Order Logics, 22nd International Confer-

ence, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings

(Lecture Notes in Computer Science), Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel (Eds.), Vol. 5674. Springer,
23ś42. https://doi.org/10.1007/978-3-642-03359-9_2

[10] CoreOS 2014. etcd: A highly-available key value store for shared
configuration and service discovery. https://github.com/coreos/etcd.

[11] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of

Systems, 14th International Conference, TACAS 2008, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS

2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture

Notes in Computer Science), Vol. 4963. Springer, 337ś340.
[12] Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder,

and Damien Zufferey. 2014. A Logic-Based Framework for Verifying
Consensus Algorithms. In International Conference on Verification,

Model Checking, and Abstract Interpretation. Springer, 161ś181.
[13] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2016.

PSync: A Partially Synchronous Language for Fault-Tolerant Dis-
tributed Algorithms. ACM SIGPLAN Notices 51, 1 (2016), 400ś415.

[14] Bruno Dutertre, Dejan Jovanović, and Jorge A. Navas. 2018. Verifica-
tion of Fault-Tolerant Protocols with Sally. In NASA Formal Methods,
Aaron Dutle, César Muñoz, and Anthony Narkawicz (Eds.). Springer
International Publishing, Cham, 113ś120.

[15] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. 2002. Extended Static Checking for

Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Program-

ming Language Design and Implementation (PLDI ’02). ACM, 234ś245.
https://doi.org/10.1145/512529.512558

[16] Álvaro García-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey.
2018. Paxos Consensus, Deconstructed and Abstracted. In Program-

ming Languages and Systems - 27th European Symposium on Program-

ming, ESOP 2018, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April

14-20, 2018, Proceedings.
[17] Yeting Ge and Leonardo De Moura. 2009. Complete instantiation for

quantified formulas in satisfiabiliby modulo theories. In International

Conference on Computer Aided Verification. Springer, 306ś320.
[18] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. 2015.
IronFleet: proving practical distributed systems correct. In Proceedings

of the 25th Symposium on Operating Systems Principles, SOSP. 1ś17.
[19] Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jùrgensen, Nils Klar-

lund, Robert Paige, Theis Rauhe, and Anders Sandholm. 1995. Mona:
Monadic Second-Order Logic in Practice. In Tools and Algorithms for

Construction and Analysis of Systems, First International Workshop,

TACAS. 89ś110.
[20] C. A. R. Hoare. 1972. Proof of correctness of data representations. 1, 4

(1972), 271ś281.
[21] Daniel Jackson. 2006. Software Abstractions: Logic, Language, and

Analysis. The MIT Press.
[22] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2010. seL4: formal verification of an operating-system
kernel. Commun. ACM 53, 6 (2010), 107ś115.

[23] Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. 2017. A
Short Counterexample Property for Safety and Liveness Verification
of Fault-Tolerant Distributed Algorithms. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages

(POPL 2017). ACM, 719ś734.
[24] Igor Konnov, Helmut Veith, and JosefWidder. 2015. SMT and POR Beat

Counter Abstraction: Parameterized Model Checking of Threshold-
Based Distributed Algorithms. InComputer Aided Verification. Springer,
Cham, 85ś102.

[25] Igor V. Konnov, Helmut Veith, and Josef Widder. 2015. What You
Always Wanted to Know About Model Checking of Fault-Tolerant
Distributed Algorithms. In Perspectives of System Informatics - 10th

International Andrei Ershov Informatics Conference, PSI 2015, in Memory

of Helmut Veith, Kazan and Innopolis, Russia, August 24-27, 2015, Revised

Selected Papers (Lecture Notes in Computer Science), Manuel Mazzara
and Andrei Voronkov (Eds.), Vol. 9609. Springer, 6ś21. https://doi.org/

10.1007/978-3-319-41579-6_2

[26] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.

Syst. 16, 2 (1998), 133ś169. https://doi.org/10.1145/279227.279229

[27] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and

Tools for Hardware and Software Engineers. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[28] K Rustan M Leino. 2010. Dafny: An automatic program verifier for
functional correctness. In Logic for Programming, Artificial Intelligence,

and Reasoning. Springer, 348ś370.
[29] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.

ACM 52, 7 (2009), 107ś115.
[30] Harry R. Lewis. 1980. Complexity results for classes of quantificational

formulas. J. Comput. System Sci. 21, 3 (1980), 317 ś 353.
[31] R. J. Lipton. 1975. Reduction: Amethod of proving properties of parallel

programs. Commun. ACM 18, 12 (1975), 717śâĂŞ721.
[32] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. 2017. From Clarity to Effi-

ciency for Distributed Algorithms. ACM Transactions on Programming

Languages and Systems 39, 3 (July 2017).

676

https://doi.org/10.1145/3133934
https://doi.org/10.1145/3133934
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-642-03359-9_2
https://github.com/coreos/etcd
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1145/279227.279229

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA M. Taube et al.

[33] P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. 2011. Decid-
able logics combining heap structures and data. In Proceedings of the

38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. 611ś622.
[34] Ognjen Maric, Christoph Sprenger, and David A. Basin. 2017. Cutoff

Bounds for Consensus Algorithms. In Computer Aided Verification -

29th International Conference, CAV 2017, Heidelberg, Germany, July 24-

28, 2017, Proceedings, Part II (Lecture Notes in Computer Science), Rupak
Majumdar and Viktor Kuncak (Eds.), Vol. 10427. Springer, 217ś237.
https://doi.org/10.1007/978-3-319-63390-9_12

[35] Kenneth L. McMillan. 2016. Modular specification and verification
of a cache-coherent interface. In 2016 Formal Methods in Computer-

Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3-6,

2016, Ruzica Piskac and Muralidhar Talupur (Eds.). IEEE, 109ś116.
https://doi.org/10.1109/FMCAD.2016.7886668

[36] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon web services
uses formal methods. Commun. ACM 58, 4 (2015), 66ś73.

[37] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic. Vol. 2283. Springer
Science & Business Media.

[38] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In 2014 USENIX Annual Technical Con-

ference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014. 305ś
319. https://www.usenix.org/conference/atc14/technical-sessions/

presentation/ongaro

[39] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017.
Paxos Made EPR: Decidable Reasoning About Distributed Protocols.
Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (Oct. 2017), 31 pages.
https://doi.org/10.1145/3140568

[40] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. 2016. Ivy: safety verification by interactive gen-
eralization. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2016, Santa

Barbara, CA, USA, June 13-17, 2016. 614ś630.
[41] F. Ramsey. 1930. On a problem in formal logic. In Proc. London Math.

Soc.

[42] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing Surveys

(CSUR) 22, 4 (1990), 299ś319.
[43] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming

and proving with distributed protocols. PACMPL 2, POPL (2018), 28:1ś
28:30.

[44] Klaus v. Gleissenthall, Nikolaj Bjùrner, and Andrey Rybalchenko. 2016.
Cardinalities and Universal Quantifiers for Verifying Parameterized
Systems. In Proceedings of the 37th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI ’16). ACM, 599ś
613.

[45] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D. Ernst, and Thomas E. Anderson. 2015. Verdi: a frame-
work for implementing and formally verifying distributed systems.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, Portland, OR, USA, June 15-17,

2015. 357ś368.
[46] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.

Ernst, and Thomas E. Anderson. 2016. Planning for change in a formal
verification of the raft consensus protocol. In Proceedings of the 5th

ACMSIGPLANConference on Certified Programs and Proofs, Saint Peters-

burg, FL, USA, January 20-22, 2016, Jeremy Avigad and Adam Chlipala
(Eds.). ACM, 154ś165. https://doi.org/10.1145/2854065.2854081

677

https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1109/FMCAD.2016.7886668
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2854065.2854081

	Abstract
	1 Introduction
	2 Overview
	2.1 Example: Toy Leader Election
	2.2 Approach
	2.3 Modular Formulation
	2.4 Modular Verification in Decidable Fragments
	2.5 Compiling to C++ and Runtime System

	3 Preliminaries
	3.1 Formulas and Theories
	3.2 Decidable Fragments

	4 Modular Proofs
	4.1 A Model Language
	4.2 Axiomatic Semantics
	4.3 Rules for Decidable Decomposition
	4.4 Ghost Modules and Slicing
	4.5 Theory Abstractions
	4.6 Language Extensions
	4.7 Modeling Network Communication
	4.8 Proof of Toy Leader Election
	4.9 Concurrency and Parametricity
	4.10 Verification Conditions

	5 Evaluation
	5.1 Verifying Raft and Multi-Paxos
	5.2 Verification Effort
	5.3 Verified System's Performance

	6 Related Work
	7 Conclusion
	References

