
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Scalable Verification of Border Gateway Protocol Configurations
with an SMT Solver

Konstantin Weitz Doug Woos Emina Torlak
Michael D. Ernst Arvind Krishnamurthy Zachary Tatlock

University of Washington, USA
{weitzkon, dwoos, emina, mernst, arvind, ztatlock}@cs.washington.edu

Abstract
Internet Service Providers (ISPs) use the Border Gateway
Protocol (BGP) to announce and exchange routes for de-
livering packets through the internet. ISPs must carefully
configure their BGP routers to ensure traffic is routed reli-
ably and securely. Correctly configuring BGP routers has
proven challenging in practice, and misconfiguration has led
to worldwide outages and traffic hijacks.

This paper presents Bagpipe, a system that enables ISPs
to declaratively express BGP policies and that automatically
verifies that router configurations implement such policies.
The novel initial network reduction soundly reduces policy
verification to a search for counterexamples in a finite space.
An SMT-based symbolic execution engine performs this
search efficiently. Bagpipe reduces the size of its search space
using predicate abstraction and parallelizes its search using
symbolic variable hoisting.

Bagpipe’s policy specification language is expressive:
we expressed policies inferred from real AS configurations,
policies from the literature, and policies for 10 Juniper
TechLibrary configuration scenarios. Bagpipe is efficient:
we ran it on three ASes with a total of over 240,000 lines of
Cisco and Juniper BGP configuration. Bagpipe is effective:
it revealed 19 policy violations without issuing any false
positives.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords Bagpipe, BGP, domain-specific language, solver-
aided languages, correctness

1. Introduction
Over 3 billion people are connected to the Internet through
university and corporate networks, regional ISPs, and nation-
wide ISPs [18]. These networks, collectively known as Au-
tonomous Systems (ASes), use the Border Gateway Protocol
(BGP) to exchange route announcements, which describe
paths that traffic can take across the Internet. To route traf-
fic reliably and securely, ASes must configure their BGP-
speaking border routers to implement policies restricting how
route announcements can be used and exchanged.

Router misconfigurations are common and have led to
many visible failures [8, 35, 28, 27]. For example, in 2008,
in response to a government order, the Pakistan Telecom AS
intended to block YouTube by announcing a non-existent
YouTube route to ASes within Pakistan. Due to a misconfigu-
ration, this route was also advertised to an AS outside Pak-
istan, PPCC. PPCC forwarded the route to its neighbors. The
non-existent route to YouTube then quickly spread through-
out the Internet and was selected for packet forwarding by
most ASes. YouTube was then unavailable to most Internet
users, as their packets to YouTube were incorrectly forwarded
to Pakistan Telecom. About two hours later, PPCC fixed the
problem by disconnecting Pakistan Telecom from the Inter-
net [5]. If Pakistan Telecom had correctly implemented its
policy to only block YouTube to ASes within Pakistan, or if
PPCC had correctly implemented its policy to only import
routes that an AS actually owns, this outage could have been
avoided.

Other failures could also have been prevented by correctly
implementing appropriate BGP policies [15]. However, do-
ing so with little to no tool support is difficult and expensive,
particularly since large ASes maintain millions of lines of fre-
quently changing configurations distributed across hundreds
of routers [19, 40].

This paper presents Bagpipe1, which uses automatic veri-
fication to prevent router misconfiguration. An AS operator
expresses control-plane policies as declarative specifications.

1 Bagpipe is open-source, see http://bagpipe.uwplse.org

Then, Bagpipe verifies that the router configurations satisfy
the specifications.

A straightforward implementation of Bagpipe would need
to consider infinitely many possible network traces to deter-
mine whether a BGP configuration violates a router policy;
if no trace is a counterexample to the specification, then the
policy holds. The novel initial network reduction enables
Bagpipe to verify a specification by searching for counterex-
amples over a finite space of network traces.

While the initial network reduction makes Bagpipe’s
search space finite, the space is still far too large to permit
brute-force enumeration. Bagpipe partitions the search space
by case splitting on the ranges of some symbolic variables,
which enables parallel symbolic exploration using an SMT-
based symbolic execution engine [39] to efficiently exploit
range information within each partition. Bagpipe also uses
predicate abstraction to further reduce the search space,
coalescing announcements with the same control flow in
the BGP configuration.

Bagpipe is an expressive, efficient, and effective verifi-
cation tool. Bagpipe’s policy specification language is ex-
pressive: specifications are rich enough to express policies
inferred from real AS configurations, express BGP policies
found in the literature (such as the Gao-Rexford model [14]
and prefix-based filtering [29]), and express policies for 10
configuration scenarios from the Juniper TechLibrary [22,
4]. Bagpipe is efficient: we applied it to three ASes with
over 240,000 lines of BGP configuration written in the Cisco
and Juniper configuration language (which Bagpipe supports
out-of-the-box). Bagpipe is effective: it revealed 19 policy
violations without issuing any false positives.

This paper’s contributions include:

• A means of expressing AS-wide policies as declarative
specifications (Section 3).

• The initial network reduction, which enables Bagpipe to
verify specifications by searching a finite set of network
traces (Section 4).

• An efficient verifier based on this reduction, which em-
ploys a novel combination of search space partitioning,
unused variable omission, symbolic execution, and predi-
cate abstraction (Section 5).

• An evaluation of Bagpipe on 10 configuration scenarios
and on 3 real ASes with over 240,000 lines of Cisco and
Juniper BGP configuration (Section 6).

2. Overview
This section provides background on BGP, shows example
policies that AS operators may need to guarantee, and illus-
trates how Bagpipe automatically verifies such policies.

2.1 Background
The core of the Internet is a network of routers that forward
data packets toward their destinations. Routers learn of a
route — a path through other routers to a destination — via

1 # Control plane for router r.
2
3 # The following RIBs contain the announcements
4 # received, selected, and forwarded by the router r.
5 # Initially, no such announcements are available.
6 ∀ n pfx, adjRIBsIn[n][pfx] = notAvailable
7 ∀ pfx, locRIB[pfx] = notAvailable
8 ∀ n pfx, adjRIBsOut[n][pfx] = notAvailable
9

10 # Process incoming announcement ann
11 # from the source src for the prefix pfx.
12 while (src, pfx, ann) = recvUpdateMessage():
13 adjRIBsIn[src][pfx] = ann
14
15 # Import and select announcements.
16 locRIB[pfx] = notAvailable
17 for n in r.neighbors:
18 annImp = IMPORT(r, n, pfx, adjRIBsIn[n][pfx])
19 if better(annImp, locRIB[pfx]):
20 locRIB[pfx] = annImp
21
22 # Export and forward announcements.
23 for n in r.neighbors:
24 annExp = EXPORT(r, n, pfx, locRIB[pfx])
25 if annExp != adjRIBsOut[n][pfx]:
26 adjRIBsOut[n][pfx] = annExp
27 sendAnnBGP(n, pfx, annExp)

Figure 1. Simplified BGP Router Implementation. This pseudocode
sketches the high-level behavior specified by the BGP standard,
RFC 4271 [32]. AS operators can only configure the IMPORT and EXPORT
rules. Section 3.1 describes restrictions on the IMPORT and EXPORT programs
to ensure conformity with RFC 4271; for example, IMPORT must return
notAvailable on announcements with AS routing loops.

the Border Gateway Protocol (BGP). Using BGP, a router
selects at most one route % per destination p and, once
selected, adds itself to % and forwards the announcement
to its neighbors. The router then forwards packets for p to
the router from which % was received. The forwarding and
selection of routes takes place on the control plane. It runs
separately and asynchronously from the data plane, on which
routers forward data packets using the routes selected by the
control plane. Bagpipe verifies control plane policies that
characterize both (1) which routes may be selected and used
by the data plane and (2) which routes a router may forward.

The Internet’s routers are owned by Autonomous Systems
(ASes) such as universities, corporate networks, regional ISPs,
and nationwide ISPs; each router is operated by exactly one
AS. ASes are identified by globally unique AS numbers. Bag-
pipe verifies control plane policies for a single AS because
AS operators do not control their neighbors’ configurations.
We call the routers owned and operated by the single AS
under consideration internal; other routers are external and
may behave arbitrarily.

Router control planes forward routes via update messages,
which consist of a prefix and an announcement.

• A prefix is a set of destination IP addresses. Sets of
destinations are represented in Classless Interdomain
Routing (CIDR) notation. A set of destinations in CIDR

notation ip/n (e.g., 192.168.1.0/24) is referred to as a
prefix, because it contains all IP addresses starting with
the same n bits as ip.

• An announcement contains metadata about the route in-
cluding: AS-path, a list of the ASes the announcement has
previously traversed which is used for avoiding routing
loops as well as serving as a measure of “distance” on
the Internet; communities, a set of flags which are uninter-
preted by the BGP protocol but can be used by ASes to
exchange additional information about a route; and local
preference, a number that influences route selection.

Figure 1 sketches how each Internet router r manages
the control plane, as described by the BGP specification,
RFC 4271 [32]. r maintains three tables, or Routing In-
formation Bases, to track announcements it has received
(adjRIBsIn), selected for routing packets on the data plane
(locRIB), and forwarded to its neighbors (adjRIBsOut). Ini-
tially (lines 6 to 8), all these tables contain only notAvailable
to indicate that r has not received any announcements. r then
enters an infinite loop to process incoming BGP update mes-
sages. Each incoming update message (line 12) includes the
address src of the router that forwarded the update message,
the prefix pfx that the update message is offering to route to,
and the announcement ann. Receipt of an update message
triggers a three-phase process.

1. r stores the received announcement in its adjRIBsIn rout-
ing table for announcements for prefix pfx from neighbor
src (line 13).

2. The router applies the configurable IMPORT program to each
announcement in adjRIBsIn for prefix pfx and each neigh-
bor n (lines 17 to 18). IMPORT may transform or replace
the announcement, including returning notAvailable.
The router chooses the best (possibly-transformed) an-
nouncement (lines 19 to 20). An announcement with
higher local preference is considered better than an an-
nouncement with lower local preference. If two announce-
ments have the same local preference, other factors like
the length of their AS-path are considered. The router
stores the best announcement in locRIB[pfx], which is
used by the data plane to forward packets.
Since AS operators cannot directly control the better test
that selects announcements, they influence selection by
configuring their IMPORT rules to either drop announce-
ments or to modify the local preference so that the better
test (line 19) will select their desired announcements.

3. For every neighbor, the router applies the configurable
EXPORT program to the announcement that was selected
as best. If the result of EXPORT differs from the announce-
ment that was most recently sent to that neighbor, then
EXPORT’s result is stored in adjRIBsOut and forwarded to
the neighbor. A router can retract a previously advertised

announcement by announcing notAvailable for the route’s
destination prefix.

To verify an AS configuration, it is not sufficient to check
the IMPORT and EXPORT programs for each router individually.
This is because internal routers establish invariants on the
announcements they forward to other internal neighbors (e.g.,
the ISP Internet2 establishes the invariant that its internal
routers never send announcements for invalid prefixes). The
configurations of those neighbors often rely on such invari-
ants. Thus, the verification task is to establish that the AS
configuration correctly implements the policy for all routers
in the AS at all times, for all possible sequences of incoming
update messages.

Figure 2 illustrates an example network of several ASes.
One AS is under consideration with three internal routers r0,
r1, and r2. The external router e0’s data-plane is capable of
directly delivering packets with destinations in the prefix
128.208.7.0/24. Note that the data plane delivers packets
along a route in the opposite direction from which update
messages for that route were forwarded through the control
plane. Consider the following example trace, i.e.,, sequence
of events happening in the AS:

1. The internal router r0 receives an update message m0

from the external router e0, which indicates that e0 has a
route to the prefix 128.208.7.0/24.

2. r0 extends m0’s announcement with its own AS number,
and selects it to route packets.

3. r0 forwards the selected announcement in the update
message m1 to its neighbors, including the internal router
r1.

4. r1 receives the update message m1 from r0.2

5. r1 selects the received announcement to route packets.
6. r1 forwards the selected announcement in the update

message m2 to its neighbors, including the external router
e0.

r0, r1, and e0 can use the selected announcements to forward
packets with destinations in the prefix 128.208.7.0/24: for
example, 128.208.7.1 and 128.208.7.42 but not 128.208.8.0.

2.2 Policies
An AS operator decides on policies that restrict the announce-
ments that the AS’s BGP routers’ control planes select and
exchange. Some policies are used to ensure security prop-
erties: for instance, a country’s ASes might want to ensure
that national traffic is routed within the country [33]. Other
policies are used to uphold business contracts, for example,
to honor agreements that certain announcements should not
be publicly shared [35].

This section uses the BlockToExternal policy as a run-
ning example. BlockToExternal prohibits internal routers
from forwarding “classified” announcements to external

2 r1 does not extend m1 with its own AS number because it received the
announcement from an internal neighbor.

r0

r2

r1e0

e1128.208.7.0/24

m2
m0

m1

AS

router

internal
external

connection

update message
propagation
route

Figure 2. BGP Routing Example. The AS under consideration (black)
consists of three internal routers connected to five external routers. These
routers use the Border Gateway Protocol (BGP) to establish a route between
e1 and e0. This route can be used to forward packets.

routers. An announcement is considered classified if it had
the BTE community set when it was received by the AS.

Bagpipe’s specifications are assertions written in the
Racket language that restrict the announcements selected
and exchanged by an AS’s internal routers. In Bagpipe, the
BlockToExternal policy is expressed as:

(implies
(external? receiver)
(not (has-community? ’BTE (original sent))))

The policy asserts that if an announcement (sent) is for-
warded by an internal router to one of its neighboring exter-
nal routers (receiver), then the announcement that gave rise
to sent (i.e., the original announcement received by the AS
before it was modified by import and export filters), must not
have contained the BTE community.

AS operators implement policies by configuring their AS’s
routers. A BGP router is configured with IMPORT and EXPORT
programs that modify announcements in order to influence
which ones are selected and forwarded (and therefore used to
route packets on the data plane). These programs are typically
written in either the Juniper or Cisco configuration language,
which are loop-free imperative programming languages with
domain-specific syntax and semantics.

Consider the following snippet of Juniper configuration
code to implement the BlockToExternal specification for
the neighbor with IP 62.40.125.17.

neighbor 62.40.125.17 { — start neighbor configuration
export [RULE1 RULE2 ... BLOCK-BTE...]; — call export rules

...}
policy-statement BLOCK-BTE { — define export rule
term block-to-external {

from community BTE; — match announcement
then reject; }} — reject matched announcement

The export statement runs each passed rule (policy-statement)
from left to right, stopping once a rule either accepts or re-
jects the announcement. Each executed rule can also modify
the announcement. Note that if the AS operator does not
correctly order statements, they may not fire on the announce-
ments they are intended to check or modify. The BLOCK-BTE
rule rejects an announcement if it has the BTE community set,
and otherwise does nothing.

Juniper/Cisco
configuration

specification Bagpipe specification holds /
counterexample

SMT Solver

Figure 3. Bagpipe Workflow. Bagpipe takes a specification and an AS’s
router configurations as input. Bagpipe verifies that the configuration cor-
rectly implements the specification using multiple concurrent SMT solver
calls, and then either indicates success or returns a counterexample that AS
operators can use to debug their configurations.

To manually verify that an AS’s router configurations im-
plement the BlockToExternal specification, an AS operator
must check that:

• For every external neighbor, every router has an export
rule that drops announcements whose BTE community is
set. These rules are similar to the BLOCK-BTE rule in the
example above.

• Each of these rules is executed: no preceding rule accepts
the announcement. For example, the rules RULE1 and RULE2
in the above example configuration should not accept
announcements whose BTE community is set.

• No rule in any router clears the BTE community.

More complex policies, such as the Gao-Rexford policy
discussed later in this paper, are even harder to verify man-
ually. Large ASes have millions of lines of configuration,
making manual verification of even simple policies expensive
and error-prone.

2.3 Bagpipe
As illustrated in Fig. 3, Bagpipe enables AS operators to ex-
press their AS-wide policies as declarative specifications, and
Bagpipe then automatically verifies that their router configu-
rations correctly implement such policies. Since AS operators
generally do not have access to their neighboring ASes’ con-
figurations, Bagpipe soundly assumes that external routers
may exhibit any behavior. Bagpipe verifies control plane
policies to ensure that inter-AS guarantees are upheld (e.g.,
confidential announcements are not leaked) and to prevent
control-plane performance issues. For example, ASes often
reject update messages whose prefix is too long (correspond-
ing to a too-small set of destinations) in order to avoid filling
their routing tables with too many routes and thus degrading
performance.3

To verify that an AS’s routers are safely configured,
Bagpipe must ensure that every possible behavior of the
AS satisfies the policy. Bagpipe models the behavior of an
AS as a trace of announcement receipts, route selections,

3 From the data plane perspective, this behavior may seem unreasonable:
if an AS would be willing to forward a packet with an IP in the prefix
64.57.29.0/24 to a particular AS, it seems it should also be willing to
forward a packet with an IP in the range 64.57.29.0/25 (since the latter
represents a strict subset of the former). However, filling RIBs with many
announcements for small prefixes can severely degrade performance.

and forwarding events in the network. Bagpipe models the
policy in Racket as a boolean predicate over traces. For
example, to verify the BlockToExternal specification from
Section 2.2, Bagpipe must guarantee that in every trace, no
internal router forwards a classified announcement. Note
that Bagpipe verifies policies even for oscillating and non-
deterministic BGP networks; thus, the guarantees provided
by Bagpipe hold even outside a BGP network’s steady state.

To verify a policy, it is not feasible to brute-force search
the space of all possible traces for a counterexample, because
the set of all traces is infinite. Not only can external routers
send arbitrarily long sequences of announcements, but the
BGP protocol itself can oscillate (in which case routers keep
announcing and withdrawing routes indefinitely).

To address this challenge, Section 4 introduces the initial
network reduction (INR). In the initial network, all RIBs con-
tain only notAvailable (as in Fig. 1 after line 8). Intuitively,
the INR exploits the observation that if a router will ever
select or forward a particular announcement, it will also do
so the initial network. An AS’s behavior is thus “maximal”
in the initial network. Bagpipe exploits this fact to reduce its
search for a counterexample from the infinite set of traces
to a finite set of traces that process two arbitrary external
announcements in the initial network.

The initial network reduction makes Bagpipe’s search
space finite, but it is still too large for naive brute force search.
Section 5 introduces four optimizations that Bagpipe im-
plements to improve search performance. Instead of using
brute-force search, Bagpipe searches the space symbolically
using an SMT solver (§5.1). Bagpipe uses predicate abstrac-
tion to soundly reduce the number of announcements that
must be considered (§5.2). Bagpipe hoists symbolic variables
so that search can be parallelized across many nodes in a
cluster (§5.3). Bagpipe avoids enumerating hoisted variables
whose values are not used (§5.4).

3. Specifications
This section first formalizes the behavior of the BGP control
plane in Section 3.1; and then uses the formalization to
describe a general framework for expressing BGP policy
specifications, and what it means for these specifications to
hold in Section 3.2.

3.1 Control Plane Formalization
This section and Figure 4 formalize the BGP control plane
discussed in Section 2. A more complete formalization
appears in a technical report [41].

The set of routers is represented as a set of IP addresses,
connected via bidirectional links over which routers exchange
announcements.

A trace is a sequence of events within the AS under
consideration. There are three kinds of event. The event
recv(r, i, p, a) means that a router r received an update
message from its neighbor i for prefix p with announcement

IP := [0, 255]× [0, 255]× [0, 255]× [0, 255] — ip addresses
P := IP × [0, 32] — prefixes

R ⊆ IP — routers
Ri ⊆ R — internal routers
Re ⊆ R — external routers
in(r) = out(r) = neighbor(r) ⊆ R — router r’s neighbors

event := recv : (r : R)→ in(r)→ P → A→ event
| slct : (r : R)→ P → A→ event
| frwd : (r : R)→ out(r)→ P → A→ event

trace ⊆ list(event) — a trace is a legal sequence of events

notAvailable — placeholder used when announcement is not available
A := {pref : N, communities : P(N), aspath : list(asn)}

— BGP announcement; P stands for powerset.
A := {current : A, original : A} ∪ {notAvailable} — tagged ann

imp : (r : R)→ in(r)→ P → A→ A — IMPORT program of Fig. 1
exp : (r : R)→ out(r)→ P → A→ A — EXPORT program of Fig. 1

adjRIBsIn : trace → (r : R)→ in(r)→ P → A — active received
locRIB : trace → (r : R)→ P → A — active selected
adjRIBsOut : trace → (r : R)→ out(r)→ P → A — active fwded

Figure 4. Control Plane Formalization. A router r is connected via in-
coming in(r) and outgoing out(r) links. A trace is a valid sequence of
events within the AS under consideration. imp and exp refer to a router’s
configurable import and export programs. In any state reachable via some
trace t, adjRIBsIn(t, r, i, p) contains the announcement most recently re-
ceived for a prefix p by a router r from r’s neighbor i. locRIB(t, r, p)
contains the announcement most recently selected for a prefix p by a router
r. adjRIBsOut(t, r, o, p) contains the announcement most recently for-
warded for a prefix p by a router r to r’s neighbor o.

a. The event slct(r, p, a) means that a router r selected
an announcement a for prefix p. The event frwd(r, o, p, a)
means that a router r forwarded an update message to its
neighbor o for prefix p with announcement a.

A valid trace must have the following 4 properties: 1)
A router can receive an update message from an internal
neighbor i only if there has previously been a correspond-
ing forwarding event by i. A router can always receive an
update message from an external neighbor, because Bagpipe
treats external neighbors as “havoc”. 2) A router selects an
announcement in its locRIB if and only if it is chosen as the
result of the import and selection process (shown in Fig. 1 on
lines 16 to 20). 3) A router can forward an update message
only if its announcement is the result of applying the export
process (shown in Fig. 1 on lines 23 to 27) to a selected an-
nouncement. 4) The receipt of an update message by a router
must be immediately followed by all the resulting select and
forward events at that router. The end of Section 2.1 provides
an example trace. A network state is reachable via some trace
t if it is the result of executing every event in the trace t.
A represents an announcement as specified by the BGP

protocol. It is a record consisting of an AS path aspath (the
AS numbers of every AS traversed by the announcement),
local preference pref (the better routine of Fig. 1 prefers
announcements with higher local preference), and a set of
communities communities (used by ASes to exchange addi-
tional information about a route; a community is a number).

Bagpipe can be easily extended to track additional informa-
tion in announcements, e.g., to model BGP extensions.

For reasoning, Bagpipe uses tagged announcements which
consist of the current value of the announcement, plus the
original value of the announcement at the time when it
entered the AS under consideration. Tracking this additional
provenance information enables AS operators to write policy
specifications such as BlockToExternal .

A router r imports an announcement ai for prefix
p received from neighbor i using the import program
imp(r, i, p, ai). imp is a loop-free imperative program that ei-
ther modifies or drops (by returning notAvailable) the passed
announcement. The export program exp is modeled similarly.
These programs are called IMPORT and EXPORT in the BGP
specification and in Section 2.

For compliance with RFC 4271, there are some restrictions
on how the IMPORT and EXPORT programs can operate. For
example, both programs must map notAvailable inputs to
notAvailable outputs, IMPORT must mark announcements with
AS routing loops as notAvailable, and EXPORT must prevent
announcements received from internal neighbors from being
exported to other internal neighbors.

Each router r stores the most recently received, selected,
and forwarded announcements. These are the active an-
nouncements that can be used to forward packets. Specif-
ically:

• adjRIBsIn contains the active received announcements:
the most recently received announcement for each prefix
and neighbor of r. A new announcement for some prefix
from a neighbor always implicitly withdraws (and thus
deactivates) any previously-received announcements for
that prefix and neighbor.

• locRIB contains the active selected announcements: the
most recently selected announcement for each prefix.

• adjRIBsOut contains the active forwarded announce-
ments: the most recently forwarded announcement for
each prefix and neighbor of r. Older routes are implicitly
withdrawn by BGP.

Given a trace t, a router r, a neighbor i of r, and a prefix p,
the function adjRIBsIn computes the network state resulting
from the execution of every event in the trace t, i.e., the
state reachable via the trace t, and returns the most recently
received announcement by r from i with prefix p in that state,
or notAvailable if no announcement has been received. Note
that the adjRIBsIn formalism takes more arguments than
adjRIBsIn of Fig. 1. When applied to a trace t and a router
r, it corresponds to adjRIBsIn. The locRIB and adjRIBsOut
are modeled similarly.

3.2 Policy Specifications
This section describes a general framework for expressing
BGP policies specifications, and what it means for these spec-
ifications to hold. Later sections show how Bagpipe automat-

V := {router ∈ R; prefix ∈ P ; sender ∈ R; received ∈ A;
selected ∈ A; bestSender ∈ R; bestReceived ∈ A;
receiver ∈ R; sent ∈ A}

spec : Type := V → bool

specHolds(τ : spec) :=
∀ (t : trace) (r ∈ Ri) (p ∈ P) (i ∈ in(r)) (o ∈ out(r)),
let i∗ := inLocRIB(t, r, p)

ai := adjRIBsIn(t, r, p, i)
a∗i := adjRIBsIn(t, r, p, i∗)
a∗l := locRIB(t, r, p)
ao := adjRIBsOut(t, r, p, o)

in τ({router := r; prefix := p; sender := i; received := ai;
selected := a∗l ; bestSender := i∗; bestReceived := a∗i ;
receiver := o; sent := ao}) = true

Figure 5. Policy Specification Definition. A policy specification τ : spec
is a predicate over a record of variables V , representing certain active
announcements. specHolds(τ) defines what it means for a specification to
hold.

ically verifies that specifications in this general framework
hold.

A specification is an invariant over an AS’s active an-
nouncements, i.e., an invariant over an AS’s routing informa-
tion bases. Formally, a specification τ is a predicate over a
record of variables V . V represents certain values in router ’s
routing information bases, namely an announcement received
from a sender for prefix , an announcement selected for
prefix which was received as bestReceived from bestSender ,
and an announcement sent to a receiver for prefix .

The definition of a specification spec, and what it means
for a specification τ to hold specHolds(τ), is given in Fig-
ure 5. A specification τ holds (i.e., an AS’s routers correctly
implement a specification), if and only if the invariant ex-
pressed by τ is true for every router state reachable via any
trace. Formally, τ holds if and only if for any network trace t,
router r, prefix p, neighbor i, and neighbor o, τ returns true
when invoked with the most recently received announcement
ai for prefix p and neighbor i, the most recently selected an-
nouncement a∗l for prefix p which was received as a∗i from i∗

(starred variables are associated with the selected announce-
ment), and the most recently forwarded announcement ao for
prefix p and neighbor o, along with r, p, i, and o.

The function inLocRIB(t, r, p) computes the neighbor
i∗. inLocRIB(t, r, p) first passes all announcements in the
adjRIBsIn(t, r, i, p) to the imp program, and then deter-
mines the neighbor with the “best” imported announcement.

Expressiveness Specifications are not arbitrary invariants
over all active announcements — specifications can only
quantify over variables in V . In particular, a specification
cannot depend on routers other than r, announcements for
prefixes other than p, announcements received from neigh-
bors other than i and i∗, and announcements forwarded to
neighbors other than o. For example:

• A specification cannot require routers to forward a re-
ceived announcement for prefix p, if and only if an an-
nouncement for some other prefix q has been selected.

• A specification cannot require routers to select a received
announcement from neighbor i, if and only if exactly k
(where k ≥ 3) announcements from other neighbors have
been received.

• A specification can require routers to select a received
announcement with either prefix p or q, if and only if that
announcement has the IMPORTANT community set.

• A specification can require routers to forward an an-
nouncement ao, if and only if ao is equal to the selected
announcement a∗l .

As shown in the evaluation, even with these restrictions,
Bagpipe still provides sufficient expressiveness for many
interesting policies. This is due to two properties of BGP:

1) A BGP router r selects and forwards announcements for
a certain prefix p, completely independent of any announce-
ments for any other prefix p′ or any other router r′ (see Fig. 1).
For example, the first disallowed policy above cannot be im-
plemented, because the decision process for announcements
of prefix p cannot inspect announcements for prefix q.

2) The imp and exp programs can only consider one
announcement at a time. This restriction is defined by the
BGP specification:

[A router’s imp/exp programs] SHALL NOT use any
of the following as its inputs: the existence of other
routes, the non-existence of other routes, or the path
attributes of other routes. [32]

For example, the second disallowed policy above cannot be
implemented, because an import rule can only consider a
single received announcement at a time.

Instead of interpreting a specification as a network state
invariant, some (but not all) specifications can also be inter-
preted as a the composition of an import specification, an
export specification, and a selection ranking.

An import specification πi restricts how routers can import
received announcements. Formally, πi(r, p, i, ai, al) : bool
holds if and only if for any network trace, πi returns true for
any announcement ai which was received by router r from
neighbor i for prefix p, and which was imported as announce-
ment al (al does not have to be selected). Note that an import
specification quantifies only over a single announcement, i.e.,
an import specification restricts all announcements indepen-
dently. An export specification πe restricts how routers can
export selected announcements, and is formalized similarly
to an import specification. Import and export specifications
resemble the domain-specific languages employed by Fre-
netic [13], NetCore [30], and NetKat [1].

A selection ranking ≤ restricts which announcements
routers can select. Formally,≤ (r, p, i, ai, i

∗, a∗i) : bool holds
if and only if for any network trace, router r, prefix p, and
neighbor i, the announcement ai received from neighbor i

is ranked lower than the announcement a∗i received from
neighbor i∗ (i∗ is the neighbor from which r has selected
the announcement). In contrast to much related work, the
selection ranking is unique because it considers multiple
announcements simultaneously.

Many specifications τ can be decomposed into an import
specification πi, an export specification πe, and a selection
ranking ≤ as follows:
τ(v) : spec :=
πi(router(v), prefix(v), bestSender(v),

bestReceived(v), selected(v)) ∧
πe(router(v), prefix(v), receiver(v),

selected(v), sent(v)) ∧
≤ (router(v), prefix(v), sender(v), received(v),

bestSender(v), bestReceived(v))

While some specifications cannot be decomposed into
this form, e.g., if the specification relates received(v) and
sent(v), all specifications that we expressed for the evalua-
tion of Bagpipe can.

The rest of this section describes examples of useful
policies, and shows how they are expressed as specifications.

Block To External Specification Section 2 described the
BlockToExternal specification, which prohibits internal
routers of the AS under consideration from forwarding
classified announcements to any external routers. An an-
nouncement is considered classified if it had the BTE (block
to external) community set at the time that it was received by
the AS. We can express this specification as:
BlockToExternal(v) := receiver(v) ∈ Re →

BTE ∈ communities(original(sent(v)))

An AS’s router configurations correctly implement this spec-
ification if and only if specHolds(BlockToExternal). Inlin-
ing the definitions of specHolds and BlockToExternal , as
well as removing unused variables, leads to the formula be-
low, which states that an AS’s router configurations correctly
implement BlockToExternal if and only if the most recently
forwarded announcement ao in any reachable router state of
any internal router r is not classified.
∀ (t : trace) (r ∈ Ri) (p ∈ P) (o ∈ out(r)),

let ao := adjRIBsOut(t, r, p, o)
in o ∈ Re → BTE ∈ communities(original(ao))

Note that the BlockToExternal specification is an invariant
on an AS’s adjRIBsOut . Further, BlockToExternal can be
decomposed into an export specification πe(r, p, o, al, ao) =
o ∈ Re → BTE ∈ communities(original(ao)), and an
import specification and selection ranking that always return
true. We say that BlockToExternal is composed of only an
export specification.

No Martian Specification The BlockToExternal specifi-
cation restricts which announcements an AS can forward.
The NoMartian specification restricts which announcements
an AS can select.

The NoMartian specification prohibits internal routers
from selecting a route announcement selected for martian

prefixes prefix , i.e., invalid prefixes such as the private prefix
10.0.0.0/8 or the loop-back prefix 127.0.0.0/8 which should
not be used to forward packets over the Internet. Formally:

NoMartian(v) := martian(prefix(v))→ selected(v)=notAvailable

The specification holds iff specHolds(NoMartian), i.e.,:

∀ (t : trace) (r ∈ Ri) (p ∈ P),
let al := locRIB(t, r, p)
in martian(p)→ al = notAvailable

Note that the NoMartian specification is an invariant on an
AS’s locRIB , and is composed of only an import specifica-
tion.

Gao-Rexford Specification According to the Gao-Rexford
model [14], a widely-used description of AS behavior, there
are three kinds of relationship that an AS can have with any
of its neighbors: customer , peer , or provider . Customers
pay the AS to forward packets, peers neither charge nor pay
money to forward packets, and providers charge money to
forward packets. To maximize profit, an AS’s routers should
thus prefer an announcement from (i.e., a route through) a
customer over the announcement from a peer or provider,
and should prefer the announcement from a peer over the an-
nouncement from a provider. This preference can be captured
with a relation <, where peer < customer , provider <
customer , and provider < peer . The GaoRexford speci-
fication prohibits a router from selecting an announcement
a∗i that is “worse” than any announcement ai received from
some neighbor i. Given a function relationship(a) that re-
turns the relationship of the neighbor from which a was
received, GaoRexford can be defined as follows:

GaoRexford(v) := relationship(received(v)) ≤
relationship(bestReceived(v))

The specification holds iff specHolds(GaoRexford), i.e.,:

∀ (t : trace) (r ∈ Ri) (p ∈ P)(i ∈ in(r)),
let i∗ := inLocRIB(t, r, p)

ai := adjRIBsIn(t, r, p, i)
a∗i := adjRIBsIn(t, r, p, i∗)

in relationship(ai) ≤ relationship(a∗i)

Note that the GaoRexford specification is composed of only
a selection ranking.

4. The Initial Network Reduction
As defined in Section 3, a specification holds if it evaluates
to true for all network states reachable by any trace in the
infinite set of possible traces. However, to verify specHolds
using current automated solvers, it is necessary to reduce
the problem to one without universal quantification over
the infinite set of traces. This section describes the initial
network reduction, which proves that a specification holds
if it evaluates to true for all network states reachable by any
trace in the finite set of traces that arise in the initial network.
At a high level, the initial network of an AS corresponds
to the network state where all routers have initialized their

specHolds(τ : spec)

⇐⇒

∀ (t : trace) (r ∈ Ri) (p ∈ P) (i ∈ in(r)) (o ∈ out(r)),
let i∗ := inLocRIB(t, r, p)

ai := adjRIBsIn(t, r, p, i)
a∗i := adjRIBsIn(t, r, p, i∗)
a∗l := locRIB(t, r, p)
ao := adjRIBsOut(t, r, p, o)

in τ({router := r; prefix := p; sender := i; received := ai;
selected := a∗l ; bestSender := i∗; bestReceived := a∗i ;
receiver := o; sent := ao}) = true

⇐⇒ — 1) rewrite RIBs

∀ (t : trace) (r ∈ Ri) (p ∈ P) (i ∈ in(r)) (o ∈ out(r)),
let i∗ := inLocRIB(t, r, p)

ai := adjRIBsIn(t, r, p, i)
a∗i := adjRIBsIn(t, r, p, i∗)
a∗l := imp(r, i∗, p, a∗i)
ao := exp(r, o, p, a∗l)

in τ({router := r; prefix := p; sender := i; received := ai;
selected := a∗l ; bestSender := i∗; bestReceived := a∗i ;
receiver := o; sent := ao}) = true

⇐= — 2) generalize best neighbor

∀ (t : trace) (r ∈ Ri) (p ∈ P) (i, i∗ ∈ in(r)) (o ∈ out(r)),
let ai := adjRIBsIn(t, r, p, i)

a∗i := adjRIBsIn(t, r, p, i∗)
al := imp(r, i, p, ai)
a∗l := imp(r, i∗, p, a∗i)
ao := exp(r, o, p, a∗l)

in pref (al) ≤ pref (a∗l)→
τ({router := r; prefix := p; sender := i; received := ai;

selected := a∗l ; bestSender := i∗; bestReceived := a∗i ;
receiver := o; sent := ao}) = true

⇐= — 3) generalize received announcements

∀ (r ∈ Ri) (p ∈ P) (i, i∗ ∈ in(r)) (o ∈ out(r)) (ai, a
∗
i ∈ A),

let al := imp(r, i, p, ai)
a∗l := imp(r, i∗, p, a∗i)
ao := exp(r, o, p, a∗l)

in transmittable(r, p, i, ai)→ transmittable(r, p, i∗, a∗i)→
pref (al) ≤ pref (a∗l)→
τ({router := r; prefix := p; sender := i; received := ai;

selected := a∗l ; bestSender := i∗; bestReceived := a∗i ;
receiver := o; sent := ao}) = true

⇐⇒

inr(τ)

where
transmittable(r, p, i, a) :=
a = notAvailable ∨
∃ (a0 ∈ A) (ξ ∈ path(i, r)), a = transmit(ξ, p, a0)

Figure 6. The Initial Network Reduction. This reduction soundly re-
moves the universal quantification over the infinite set of traces from
specHolds . The reduction proceeds in three consecutive steps. 1) Rewrite
RIBs rewrites a∗l and ao in terms of a∗i . 2) Generalize best neighbor strength-
ens specHolds with facts about selected announcements and then general-
izes i∗. 3) Generalize received announcements strengthens specHolds with
facts about received announcements and then generalizes ai and a∗i . Terms
added in each step are blue.

r0

r2

r1

e0

128.208.7.0/24 m1

m3

m6
m8

Figure 7. Initial Network Reduction Example.

RIBs to notAvailable (corresponding to the state after line 8
in Fig. 1). We have proven this reduction in Coq. The full
formalization of the BGP semantics and the reduction are
out of scope for this paper, but can be found in a technical
report [41]. Here we focus on the reduction and its intuition.

To understand the intuition behind the initial network
reduction, consider an announcement a received by a router
r via some trace t. To be received by r, announcement a had
to be transmitted along some path (a sequence of connected
routers) through the network. The initial trace t′ of t with
respect to a contains only those events in t that transmit a,
but not those events that transmit any other announcements
(i.e., t′ transmits a in the initial network without any other
announcements that could interfere).

For an announcement to be transmitted along a path, all
the routers along the path have to select and forward the
announcement. This means that in trace t: 1) for every router
along the path the announcement was selected because it was
better than all other announcements, and 2) the announcement
was forwarded because it was different from the previously
forwarded announcement.

If an announcement was transmitted in t along the path ξ,
it will also be transmitted in t′ along ξ because: 1) for every
router along the path the announcement is selected because
there are no other announcements that could be better, and 2)
the announcement is forwarded because it is different from
the initial announcement notAvailable stored in all RIBs.

This implies that if Bagpipe verifies that a specification
holds for those announcements that can be transmitted via
the initial trace, then the specification also holds for those
announcements that can be transmitted via any trace. It thus
suffices to only consider the finite set of initial traces, instead
of the infinite set of all traces. Thus, an AS’s behavior in the
initial network is “maximal” in a sense: if an announcement
will ever be selected or forwarded by a router in any network
state, it will also be selected or forwarded in the initial
network.

To illustrate, consider the full trace t corresponding to
Fig. 7, where router e0’s data-plane can directly deliver
packets for destinations in 128.208.7.0/24:

1. r1 receives m1 from e0.
2. r1 imports m1, resulting in a2, and selects a2.
3. r1 exports a2, resulting in m3, and forwards m3 to r0.
4. r0 receives m3 from r1.
5. r0 imports m3, resulting in a5, and selects a5.

6. r0 receives m6 from e0.
7. r0 imports m6, resulting in a7, and selects a7.
8. r0 exports a7, resulting in m8, and forwards m8 to r2.
9. r2 receives m8 (containing a8).

Black events are in the initial trace t′ of t with respect to
the announcement a8. Gray events are not in the initial trace t′

(these events are also gray in the figure). Subscripted variables
r, e, m, and a correspond to internal routers, external routers,
update messages, and announcements respectively.

We focus on the announcement a8 received by router
r2, i.e., adjRIBsIn(t, r2, 128.208.7.0/24, r0). The announce-
ment a8 is the result of transmitting the original update
message m6 along the path ξ = [e0, r0, r2] via the network
trace t.

It follows that a8 is also the result of transmitting m6

along ξ via the initial trace t′ consisting only of the black
events in trace t. t′ is still legal despite the fact that ro does
not receive m3 because there is no better announcement than
a7 for r0 to select, and the value of r0’s RIBs is notAvailable
and thus different from a8

The following paragraphs and Fig. 6 use the above in-
sight to precisely explain the initial network reduction which
eliminates specHolds’s quantification over all traces. As men-
tioned earlier, we have proven this reduction in Coq, but the
full formalization of the BGP semantics and the reduction
are out of scope for this paper. The initial network reduction
proceeds in three steps.

1. Rewrite RIBs By the aforementioned insight, it suffices
to only consider the initial traces for received announcements
in the adjRIBsIn , but to verify a specification we have to
also consider the announcements in the adjRIBsOut and
locRIB . This step eliminates specHolds’s dependence on
adjRIBsOut and locRIB . This is achieved by rewriting a)
the forwarded announcements in the adjRIBsOut in terms
of locRIB and b) the selected announcements in locRIB in
terms of adjRIBsIn . These rewrites are possible because the
adjRIBsOut is computed from the locRIB , and the locRIB
in turn is computed from the adjRIBsIn , by the algorithm
described in Fig. 1.

a) The announcement adjRIBsOut(t, r, p, o) forwarded
by router r to some neighbor o is computed by applying
the export program exp to the announcement locRIB(t, r, p)
selected by r. adjRIBsOut(t, r, p, o) is therefore equal to
exp(r, o, p, locRIB(t, r, p)).

b) The announcement locRIB(t, r, p) selected by router r
is computed by first applying the import program imp to each
announcement adjRIBsIn(t, r, i, p) received by a neighbor
i of r, and then selecting the “best” one (as described in
Fig. 1). Given the neighbor i∗ from which the “best” an-
nouncement was selected, locRIB(t, r, p) is therefore equal
to imp(r, i∗, p, adjRIBsIn(t, r, i∗, p)).

The function inLocRIB(t, r, p) computes the neighbor
i∗. inLocRIB(t, r, p) first passes all announcements in the

adjRIBsIn(t, r, i, p) to the imp program, and then deter-
mines the neighbor with the “best” imported announcement.

2. Generalize Best Neighbor Note that the inLocRIB func-
tion still depends on the trace t. This step eliminates this
dependence.

Consider the announcement a∗l selected by the router r.
A router always chooses the announcement a∗l which has
pref greater or equal to the pref of any other received and
imported announcement al.

Therefore, if Bagpipe verifies that a specification holds for
all received and imported announcements that have greater or
equal pref than al, no matter from which neighbor they were
received, the specification also holds for the announcement
a∗l received from neighbor i∗.

This step applies this insight by strengthening specHolds
with the fact pref (imp(r, i, p, ai)) ≤ pref (a∗l), and then
generalizing i∗ to eliminate the dependence on t.

For those readers familiar with the BGP specification, note
that Bagpipe fully supports tie-breaking on announcements
with equal pref , e.g., tie-breaking on MED, and OSPF cost.
This support stems from the fact that a specification must
hold for all announcements with equal pref . This means that
Bagpipe may falsely claim that a specification does not hold
for a selected announcement a∗l which can actually never
be selected because a∗l ’s OSPF cost is higher than that of
all other announcements, but will never falsely claim that a
policy holds.

3. Generalize Received Announcements We are finally
ready to apply the insight mentioned in the beginning of
this section. This step replaces specHolds’s use of received
announcements in the adjRIBsIn , which requires quantifi-
cation over all traces, with any announcements that can be
transmitted in the empty network. Note that there are two
received announcements ai and a∗i that need consideration.

An announcement a received by router r from neighbor
i for some prefix p is transmittable in the empty network
transmittable(r, p, i, a) in two ways. Either a is the initial
value notAvailable stored in r’s adjRIBsIn , or ai is the
result of transmitting some original announcement a0 through
the initial network along some path ξ : path(i, r) that ends
in router i followed by router r.

transmit(ξ, p, a0) computes the announcement that re-
sults from forwarding an announcement a0 for prefix p along
some path ξ in the initial network absent of any other an-
nouncements, i.e., it applies the appropriate imp and exp
programs of every router along ξ to a0.

Bagpipe exhibited no false positives in our evaluation. One
reason is that modulo pref tie-breaking, the initial network
reduction is complete for specifications that only depend on
either ai or a∗i (but not both), because if either ai or a∗i can
be received by r via the initial trace, then by definition, there
exists a trace via which r receives either ai or a∗i . Examples
of specifications that depend on only ai or al are NoMartian
and BlockToExternal . If a specification depends on both ai

and a∗i , it is possible that no trace exists that forwards both ai
and a∗i to r, but we have not observed such cases in practice.

The goal of the initial network reduction was to eliminate
specHolds’s quantification over any infinite sets, specifically
the set of all traces. The initial network reduction achieves
this goal, because INR only quantifies over finite sets. The set
of prefixes P is large but finite. The set of announcements
A is large but finite, as the BGP specification restricts the
maximal announcement size to 4096 bytes. The set of routers
Ri, in(r), and out(r) are also finite.

For ASes in a full-mesh configuration, meaning that each
internal router is directly connected to all other internal
routers4, the set of paths path(i, r) is also finite. This fol-
lows from the fact that an internal router r either received
announcement ai from some external router i — in which
case the path is [i, r] — or from an internal router i (other
than r) which in turn received the announcement from an
external router re — in which case the path is [re, i, r]. The
set of paths is thus:

path(i, r) := {[i, r] | i ∈ Re} ∪
{[re, i, r] | i ∈ Ri \ {r} ∧ re ∈ Re ∧ re ∈ neighbor(i)}

Routing loops inside the AS are impossible, as routers do not
forward announcements received from internal neighbors to
internal neighbors.

We refer to the formula resulting from the initial network
reduction as INR(τ). Because INR(τ) only quantifies over
finite sets, it enables automatic verification of specHolds
using current solvers.

5. Bagpipe Implementation
Bagpipe verifies a specification τ by searching for counterex-
amples to INR(τ). While this search space is finite, it is still
far too large to permit naive brute-force search. This section
describes how Bagpipe searches this space efficiently.

5.1 Symbolic Search using Rosette
Bagpipe uses Rosette [39] to symbolically search for coun-
terexamples. Rosette extends the Racket language with sym-
bolic values, assertions, and a verify function. (verify e)
attempts to assign a concrete value to every symbolic value
in e such that an assertion in e is violated. Rosette imple-
ments verify by reducing the search for a failure-inducing
assignment to a satisfiability query, which is then discharged
by an off-the-shelf SAT or SMT solver. Once the solver re-
turns, its output is automatically lifted to a concrete value for
each symbolic value. These concrete values are then used to
provide counterexamples.

Figure 8 shows the implementation of Bagpipe in Rosette.
The core of Bagpipe is a translation of INR(τ) to a Rosette
program. The universally-quantified variables in INR(τ) are

4 Some large ASes avoid the performance penalty of a full-mesh configu-
ration by using route reflectors, routers that exist to propagate messages
between multiple connected components of an AS’s topology. Bagpipe does
not currently support this optional extension of the BGP specification.

(define (bagpipe τ) (verify (begin
(define r (symbolic Ri))
(define p (symbolic P))
(define i i∗ (symbolic (in r)))
(define o (symbolic (out r)))
(define ai a∗i (symbolic A))
(define al (imp r i p ai))
(define a∗l (imp r i∗ p a∗i))
(define ao (exp r o p a∗l))
(assert

(implies
(transmittable r p i ai) (transmittable r p i∗ a∗i)
(≤ (pref al) (pref a∗l))

(τ {router := r; prefix := p; sender := i; received := ai;
selected := a∗l ; bestSender := i∗; bestReceived := a∗i ;
receiver := o; sent := ao}))))))

Figure 8. Bagpipe implementation in Rosette. The core of Bagpipe is
a translation of INR(τ) to a program (begin ...). This program uses
symbolic variables instead of universal quantification. Rosette’s verify
function attempts to assign a concrete value to every symbolic value in
the program such that an assertion in the program is violated. If no such
assignment is found, INR(τ) is valid, and the specification τ holds.

translated to symbolic values, which are used as inputs to the
assertion that τ holds over all valid pairs of announcements.5

Users of Bagpipe express specifications in Racket as
boolean predicates over active announcements. For example,
a user would express the NoMartian specification from
Section 3 as follows:

(define NoMartian (v)
(implies (martian (prefix v))

(= (selected v) notAvailable)))

In Bagpipe, routers are configured using the imp and exp
programs. In practice, routers are configured using router con-
figuration languages; most real-world routers use languages
developed by Juniper and Cisco. An interpreter bridges the
gap between Bagpipe and real-world configurations; it is a
program that takes a router configuration and inputs (e.g.,
router, prefix, announcement) and returns the result (an an-
nouncement) of running the router configuration. Bagpipe
includes interpreters for Juniper and Cisco configurations.
These interpreters consist of a parser that generates an AST,
and an execution engine that can run an AST given some
inputs. Rosette lifts the execution engine to a symbolic exe-
cution engine that can run an AST symbolically on all inputs.
Bagpipe also infers the network topology of the AS from
router configurations.

Bagpipe’s interpreters skip commands unrelated to BGP
(e.g., configuration commands for other protocols including
IGMP, MPLS, and ISIS), and ignore low-level BGP config-
uration details (e.g., maximum update message TCP packet
size). This could introduce unsoundness (e.g., if an AS op-
erator accidentally configured maximum TCP packet size
to be 0, then all update messages would be dropped). The

5 The translation of transmittable into Rosette is omitted due to space
reasons, but it is straightforward.

interpreters also currently do not handle some BGP-related
commands, such as IP broadcasting.

In our experiments, we found that Bagpipe’s current
interpreters are sufficient to handle hundreds of thousands of
lines of industrial BGP configurations. Extending Bagpipe’s
interpreters to support additional BGP-conforming features
or configuration languages requires no changes in the main
algorithm, because Bagpipe models import and export rules
as arbitrary functions. Such extensions may however require
substantial engineering efforts in the interpreters, as existing
configuration languages are often proprietary and contain a
vast number of features.

5.2 Predicate Abstraction
The set of possible announcements is finite, since BGP re-
stricts the maximal size of announcements to 4096 bytes.
Even when represented symbolically, this is still a large
search space. Therefore, Bagpipe also implements a form
of predicate abstraction [16] by coalescing aspath and
communities values that induce the same control flow in
the BGP configuration.

Bagpipe exploits the fact that the Juniper and Cisco config-
uration languages use regular-expression predicates to branch
on announcement attributes. The following example shows
two such predicates contained in the Internet2 configurations:

as-path PRIVATE ".* (64512-65535) .*";
community LHCONE-DO-NOT-ANNOUNCE-AS members 65010:*;

PRIVATE matches all AS-paths that contain at least one
AS with an AS number in the range 64512 – 65535.
LHCONE-DO-NOT-ANNOUNCE-AS matches all communities whose
first 16 bits encode the number 65010. The set of predicates
in a configuration is finite and usually fairly small. All con-
figurations of Internet2 combined, for example, contain only
73 community predicates.

Bagpipe implements predicate abstraction by automat-
ically discovering all regular-expression predicates used
in router configurations, and replacing the aspath and
communities data contained in an announcement with a
bit-vector that contains a bit for every predicate over aspath
or communities . These bit-vectors are represented symboli-
cally during Bagpipe’s search for counterexamples.

This approach is sound, but incomplete. Consider for
example a configuration with two predicates: predicate Φ
matches every aspath , and predicate φ matches exactly
one specific aspath . Bagpipe would explore a branch on
Φ(a) ∧ ¬φ(a) which cannot be executed in reality because
for every a, Φ(a) implies φ(a). We did not see such false
positives in our evaluation.

5.3 Parallelization through Hoisting
Bagpipe hoists certain symbolic values out of the program
passed to Rosette’s symbolic search, and enumerates them
instead of representing them symbolically. For example,
Bagpipe hoists (symbolic Ri) out of the symbolic execution,

manually enumerating the set Ri instead. Rosette is then
invoked for each enumerated value.

(define (bagpipe τ) (for/each (r Ri)
(verify (begin . . . r . . .))))

Bagpipe parallelizes the resulting loop across multiple
nodes in a cluster. Bagpipe hoists all variables except for an-
nouncements and prefixes, i.e., r, o, i, i∗, and some variables
in transmittable . Bagpipe hoists these sets because their rel-
atively small size and minimal structure are not exploitable
by the symbolic execution engine.

The number of calls made by Bagpipe to Rosette can be
computed by considering the magnitude of all of the sets that
Bagpipe has to enumerate. To verify a policy, Bagpipe has to
enumerate every internal router r, all the neighbors to which
r can forward an announcement ao, and all the paths along
which the two received announcements ai and a∗i could have
been transmitted to r.

The number of neighbors to which r can forward an-
nouncement ao is |out(r)|. There are three kinds of paths
along which an announcement could have been transmitted
to router r. (1) The announcement was directly transmit-
ted from one of r’s external neighbors e to r. There are
n(r) = |{e ∈ Re|e ∈ neighbor(r)}| such paths. (2) The
announcement was transmitted from an external neighbor
through an internal neighbor i to r. There are

∑
i∈Ri\{r} n(i)

such paths. (3) The announcement is the value notAvailable
with which the adjRIBsIn for an incoming neighbor was
initialized. There are |in(r)| such cases. The total number of
calls Bagpipe makes to Rosette are thus:

∑
r∈Ri

|out(r)|

|in(r)|+ n(r) +
∑

i∈Ri\{r}

n(i)

2

Assuming that an AS has at least one external neighbor,
the asymptotic number of Rosette calls made by Bagpipe
is O(|Ri|4|Re|3), where Ri is the set of internal routers and
Re is the set of all external neighbors. This stems from the
fact that O(|out(r)|) = O(|in(r)|) = O(|Ri| + |Re|), and
O(n(r)) = O(|Re|).

5.4 Omitting Unused Specification Arguments
There are specifications that do not use all of their arguments;
BlockToExternal , for example, uses neither the sender
argument nor the received argument (whose value depends
on sender). Enumerating these unused arguments would
result in many calls to Rosette which are guaranteed to
be equivalent. To avoid this duplication, Bagpipe does not
enumerate certain combinations of unused arguments, thereby
reducing the number of calls to Rosette. In practice, we
found that useful specifications use one of the following three
combinations of unused variables (all supported by Bagpipe):

• Bagpipe does not enumerate sender and receiver if argu-
ments sender , received , receiver , and sent are unused.

This is the case for all specifications composed of only an
import specification (e.g., the NoMartian specification).
In this case, Bagpipe calls Rosette O(|Ri|2|Re|) times.

• Bagpipe does not enumerate sender if arguments sender
and received are unused. This is the case for all specifica-
tions composed of only an export specification (e.g., the
BlockToExternal specification). Bagpipe calls Rosette
O(|Ri|3|Re|2) times.

• Bagpipe does not enumerate receiver if arguments
receiver and sent are unused. This is the case for all
specifications composed of only a selection ranking (e.g.,
the GaoRexford specification). Bagpipe calls Rosette
O(|Ri|3|Re|2) times.

6. Evaluation
This section evaluates Bagpipe by answering the following
questions. Expressiveness: Can Bagpipe specify policies for
common configuration scenarios? Efficiency: How long does
Bagpipe take to verify specifications? Effectiveness: How
many bugs does Bagpipe find, and how many false positive
does Bagpipe produce?

6.1 Juniper TechLibrary Scenarios
We evaluated Bagpipe on 10 configuration scenarios from the
Juniper TechLibrary. Specifically, we evaluated Bagpipe on
10 scenarios described in the Basic BGP Configuration [4]
and Configuring Routing Policies [22] sections of the Juniper
TechLibrary, which is the official technical documentation for
Juniper products. We used all scenarios from the Basic BGP
Configuration, but did not use 25 scenarios from Configuring
Routing Policies because: 5 scenarios require extensions or
optional features of the BGP specification RFC 4271 that
are inconsistent with Bagpipe’s model of BGP (specifically
exporting routes that are not selected, and delaying selec-
tion of announcements to reduce oscillation), 5 scenarios
are unrelated to BGP verification (e.g., logging the number
of forwarded announcements), and 15 scenarios require cur-
rently unsupported Juniper features (e.g., policy subroutines)
that we believe could be implemented in Bagpipe without
changing Bagpipe’s model of BGP.

Each scenario describes a set of AS operator objectives,
and it provides router configurations for an entire example
AS that achieves these objectives. For each scenario, we
expressed a specification and verified it against the scenario’s
configurations. Bagpipe verified each specification in less
than one minute.

The following list provides the name of each scenario,
along with a description and code size of the specification
that we expressed and verified (no line is longer than 80
characters):

1. Configuring Internal BGP Peering. All internal routers
share their route announcements with all other internal
routers (5 lines).

2. Using AS Path Regular Expressions. Routers block an-
nouncements whose AS path matches a given set of regu-
lar expressions (4 lines).

3. Disabling Suppression of Route Advertisements. Route
announcements are sent back to the neighbor from which
they were received (5 lines).

4. Configuring Policy Chains and Route Filters. The prefix
of exported announcements matches the given chained
route filters (10 lines).

5. Configuring a Conditional Default Route Policy. A default
route is exported (3 lines).

6. Configuring Communities in a Routing Policy. Routers set
appropriate local preferences according to an announce-
ment’s communities (8 lines).

7. Rejecting Known Invalid Routes. Known invalid routes
are rejected (3 lines).

8. Configuring External BGP Peering. A router is connected
only to external routers in a given set (4 lines).

9. Configuring Routing Policy Prefix Lists. The prefix of
exported announcements matches the given prefix lists
(12 lines).

10. Using Routing Policy to Set a Preference Value for BGP
Routes. Any local preference set by external neighbors is
replaced with a default value (3 lines).

To ensure Bagpipe detects specification violations, we
also modified each scenario’s configurations to violate its
objectives. In each case, Bagpipe detected the violation in
under a minute.

Section 3 showed that Bagpipe supports policies found in
the literature, such as the Gao-Rexford model [14] and prefix-
based filtering [29]. Section 6.2 shows that Bagpipe can also
express policies inferred from real AS configurations.

6.2 Real AS Configurations
We inferred and verified specifications from the configura-
tions of three ASes: the nation-wide ISP Internet2, the re-
gional ISP BelWü, and the local ISP Selfnet. These configu-
rations total over 240,000 lines of Cisco and Juniper code.

For each inferred specification, Figure 9 summarizes
the time required to verify the specification, the number
of searches that were performed by Rosette (which are
performed in parallel), the arguments passed to the policy
that are not used (see Section 5.4), and the number of import
and export programs that violate the specification. Bagpipe
did not produce false positives on any benchmark.

Timings are on Amazon EC2 with 2 instances of type
c3.8xlarge, each with 32 virtual-cores and 60 GB of memory.
The experiments ran for a total of 82h, the cost for which is
about $30 using EC2 spot instances.

Nationwide ISP: Internet2 The Internet2 AS connects
educational, research, and government institutions spread
throughout the US. We have access to the full configura-
tion of Internet2’s 10 BGP routers [19]. These routers are
connected to 274 external neighbors. The configurations to-

tal 100,651 lines of Juniper code. We verified four policy
specifications for Internet2, described below.

Internet2’s configurations contain checks to block the
import of announcements with martian prefixes. We thus
inferred that it is Internet2’s policy to never import martian
prefixes. It takes Bagpipe 1,178s (20min) to verify that
Internet2 correctly implements the NoMartian specification.

Internet2 contains dedicated sanity checks in 237 out of
the 274 imp programs. After removing these sanity checks
from the configurations, it takes Bagpipe 1,194s (20min) to
check the NoMartian specification for Internet2 (indicated
by no checks in Fig. 9). Because Internet2 performs a large
variety of other checks on announcements, the specification
continues to hold for 189 neighbors. This result implies
that Bagpipe’s ability to verify specifications is not only
useful to increase confidence in the correctness of router
configurations, but also to safely remove unnecessary sanity
checks — 152 in this case.

From Internet2’s configurations, it appears to be Inter-
net2’s policy not to forward an announcement to external
routers if the announcement has the BTE community set. It
takes Bagpipe 28,594s (8h) to check the BlockToExternal
specification. The configurations of 5 neighbors do not adhere
to the BlockToExternal specification. We notified Internet2
of these violations, but have not yet received a response.

Internet2 appears to operate according to a refined version
of the Gao-Rexford model discussed in Section 3. We man-
ually classified neighbors either as customer or peer using
Internet2’s pricing structure [20] and comments found in the
configurations. None of Internet2’s neighbors is a provider .
We refined the usual GaoRexford specification to support In-
ternet2’s advanced policies, such as blocking announcements
for invalid prefixes and allowing both customers and peers
to influence Internet 2’s preference of an announcement by
setting certain communities. For example, a peer can set the
HIGH_PEERS community to increase an announcement’s pref-
erence. It takes Bagpipe 260,790s (72h) to check the refined
GaoRexford specification. The configurations of 14 neigh-
bors do not adhere to the refined GaoRexford specification.
We have contacted Internet2 about these violations, but have
not yet received a response.

Regional ISP: BelWü We have access to the BGP related
configurations for three BGP routers6 of the regional ISP
BelWü [3]. These routers are connected to 300 external
neighbors. The configurations total 143,657 lines of Cisco
code.

At the time of our experiments, it was BelWü’s policy to
monitor all announcements for martian prefixes by tagging
them with a particular community, and to use this monitoring
information to evaluate the impact of martian filtering on
BelWü’s existing routes. Because of good results, BelWü is
planning to enable strict martian filtering in the near future.

6 Our experiments for these configurations are to demonstrate scaling, and
assume that only these three routers are operating in the AS.

AS Policy Time Solver Calls Unused Arguments Violations False Positives
Internet2 (nation-wide) NoMartian 1,178s (20min) 3,114 sender and receiver 0 0
Internet2 (nation-wide) NoMartian (no checks) 1,194s (20min) 3,114 sender and receiver N/A 0
Internet2 (nation-wide) BlockToExternal 28,594s (8h) 115,330 sender 5 0
Internet2 (nation-wide) GaoRexford 260,790s (72h) 971,680 receiver 14 0
BelWü (regional) NoMartian 2,106s (35min) 1516 sender and receiver N/A 0
BelWü (regional) TagMartian 2,165s (36min) 1516 sender and receiver 0 0
BelWü (regional) RemoveOwnASN 1,838s (31min) 1516 sender and receiver 0 0
Selfnet (local) StaticExport 2s 9 none 0 0

Figure 9. Real AS Configuration Case Study Results. Solver Calls is the number of calls to Rosette’s solve function. Unused Arguments indicates the arguments
passed to the policy that are not used. Violations is the number of specification violations found. Bagpipe did not issue false positives in any experiment.

Bagpipe took 2,106s (35min) to check the NoMartian
specification and, as expected, revealed that BelWü imports
martian prefixes (from 268 neighbors). We also expressed
the specification TagMartian , which requires BelWü to
tag all announcements for martian prefixes. Bagpipe took
2,165s (36min) to verify that BelWü correctly implements
TagMartian .

It is BelWü’s policy to remove, from all received an-
nouncements, communities that contain the ISP’s own AS
number. We call this policy RemoveOwnASN . It takes Bag-
pipe 1,838s (31min) to verify that BelWü correctly imple-
ments RemoveOwnASN .

The configurations did not indicate BelWü’s Gao-Rexford
relationships (customers, peers, and providers), and we did
thus not verify a GaoRexford policy. Verifying such a policy
would require 619,258 solver calls.

Local ISP: Selfnet We also analyzed the 66 lines of Juniper
configuration for the sole BGP router of the local ISP Self-
net [34]. This router has only a single BGP neighbor, and the
ISP’s policy is to only export announcements with the pre-
fixes that it actually owns. We call this policy StaticExport .
Bagpipe took 2s to verify that Selfnet correctly implements
StaticExport .

6.3 Potential False Positives
Bagpipe has three potential sources of false positives:

1) When two announcements are tied on local preference,
BGP uses complex rules to choose between them. Bagpipe
conservatively and soundly models tie breaking as non-
deterministic choice, rather than completely modeling the
details of lower-level protocols like OSPF that these rules use
(Section 4).

2) Bagpipe uses predicate abstraction to represent an-
nouncements. Removing this source of incompleteness would
dramatically increase the size of Bagpipe’s search space (Sec-
tion 5.2).

3) The initial network reduction forwards announcements
in the initial network, which is sound but could lead to false
positives (e.g., when two announcements can be individually
forwarded in the initial network but interfere with each other
in reality). We do not know how to eliminate this source

of incompleteness while keeping the search space finite
(Section 4).

We found, via manual inspection, that none of the counter
examples returned by Bagpipe during our evaluation were
due to false positives.

7. Related Work
In this section, we address related work in network config-
uration checking. We also briefly discuss software-defined
networking and prior work on SMT-based tools.

Network Analysis rcc [11] is a tool to find bugs in BGP
configurations, which has been adopted by many AS admin-
istrators. It attempts to find violations of route validity and
path visibility by inferring inter-AS relationships from the
configuration itself (the input to the tool is a set of configura-
tions from all of the routers in an AS). Unlike Bagpipe, rcc
does not provide strong guarantees about the checked config-
urations; there are both false positives and false negatives in
the configuration errors flagged by the tool.

Batfish [12] is a Datalog-based network configuration
analysis tool. Router configurations, topology descriptions,
and a particular set of received BGP announcements are
translated into Datalog facts which are processed by Datalog
rules to generate routing-tables. Z3 is then used to verify first-
order properties over the generated routing-tables. Bagpipe
and Batfish make different design decisions, and are thus able
to verify different properties. Bagpipe verifies a restricted
set of routing-table invariants (described in Section 3.2) with
respect to any set of received announcements, whereas Batfish
verifies arbitrary first-order logic formulas over routing-tables
with respect to a particular set of BGP announcements.
Great care has been taken in Bagpipe that all invariants
can be translated to SAT formulas which can be decided
in exponential time, whereas Batfish’s formulas are generally
undecidable.

Header Space Analysis (HSA) [23] verifies a data plane’s
packet forwarding behavior in a similar way to Bagpipe
(which verifies a control plane’s announcement forwarding
behavior). Contrary to Bagpipe, HSA uses a custom symbolic
search algorithm instead of an SMT solver; and HSA verifies
specifications that restrict the forwarding of packets inde-
pendent of any other packets in the network (like Bagpipe’s

import/export specifications), but cannot verify specifications
that restrict the forwarding of packets depending on other
packets in the network (like Bagpipe’s selection rankings).

BGP Simulation C-BGP [31] is a BGP simulator. Given a
topology and a set of configurations, it determines how traffic
will be routed. AS operators can use it both for debugging
existing problems and for testing potential new configurations.
C-BGP and Bagpipe are potentially complementary; an AS
operator could test configurations using C-BGP and then
verify them using Bagpipe to guarantee that the network
is configured to correctly handle any set of received path
announcements.

SDN Software defined networking is a new paradigm for
local networks in which router configuration is controlled by
a single program running on a master router. There has been
a large amount of work on verifying the behavior of software-
defined networks, including language support [30, 1], model-
checking [2, 9], and full formal verification [17]. SDN has
thus far not been used to control BGP-speaking border
routers, but even if current BGP configuration languages
are supplanted by SDN, tools like Bagpipe will still be useful
to ensure that configurations respect AS policies.

SMT-Based Tools SAT and SMT solvers have been applied
in a wide range of automated tools for bug finding [7, 6, 10],
verification [25, 26, 37], program synthesis [36, 24], and
fault localization [21]. Bagpipe builds on Rosette [38], a
programming language designed for easy creation of such
tools. In particular, Rosette is equipped with a symbolic
compiler that can efficiently reduce a verification, synthesis,
or fault localization query about all bounded executions of
a program to an SMT formula. Because the initial network
reduction enables Bagpipe to treat BGP configurations as
finite programs, we can use Rosette’s bounded reasoning
facilities for sound and scalable verification of BGP policies.

8. Conclusion
We presented Bagpipe, a tool to automatically verify that
router configurations correctly implement AS operators’ BGP
policies. To make this verification possible, we introduced the
initial network reduction, which reduces verification of BGP
policies from checking an infinite set of traces to checking a
finite set of initial traces, thus enabling Bagpipe to use current
constraint solvers effectively. Building on this reduction,
the Bagpipe implementation additionally employs a novel
combination of search space partitioning, unused variable
omission, symbolic execution, and predicate abstraction. We
evaluated Bagpipe on 10 configuration scenarios from the
Juniper TechLibrary and three ASes with a total of over
240,000 lines of configuration, finding that Bagpipe will scale
to the complexity and scope of real-world AS configurations.

Future work will extend Bagpipe to support additional
BGP features (e.g., route reflectors), incrementalize verifica-
tion for configuration updates, and use Rosette’s synthesis

features to automatically generate configurations that cor-
rectly implement policies.

Acknowledgments
We thank Tim Kleefass and Sebastian Neuner from BelWü,
as well as Jann Haber, Hannes Rist, and Christoph Wurm
from Selfnet for sharing their BGP configurations and pro-
viding valuable feedback. We also thank the reviewers for
their insightful comments. This material is based upon work
supported by the National Science Foundation Graduate
Research Fellowship under Grant No. DGE-1256082. This
material is based on research sponsored by DARPA under
agreement numbers FA8750-12-2-0107, FA8750-12-C-0174,
FA8750-15-C-0010, and FA8750-16-2-0032. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon.

References
[1] C. J. Anderson et al. “NetKAT: Semantic Foundations

for Networks”. In: POPL. 2014.
[2] T. Ball et al. “VeriCon: Towards Verifying Controller

Programs in Software-defined Networks”. In: PLDI.
2014.

[3] BelWü. https://www.belwue.de/.
[4] BGP Feature Guide for the OCX Series. 2015.
[5] M. Brown. Pakistan hijacks YouTube. http://research.

dyn.com/2008/02/pakistan-hijacks-youtube-1/. 2008.
[6] C. Cadar, D. Dunbar, and D. Engler. “KLEE: unassisted

and automatic generation of high-coverage tests for
complex systems programs”. In: OSDI. 2008.

[7] E. Clarke, D. Kroening, and F. Lerda. “A Tool for
Checking ANSI-C Programs”. In: TACAS. 2004.

[8] J. Cowie. China’s 18-Minute Mystery. http://research.
dyn.com/2010/11/chinas-18-minute-mystery/. 2010.

[9] M. Dobrescu and K. Argyraki. “Software Dataplane
Verification”. In: NSDI. 2014.

[10] J. Dolby, M. Vaziri, and F. Tip. “Finding bugs effi-
ciently with a SAT solver”. In: FSE. 2007.

[11] N. Feamster and H. Balakrishnan. “Detecting BGP
Configuration Faults with Static Analysis”. In: NSDI.
2005.

[12] A. Fogel et al. “A General Approach to Network
Configuration Analysis”. In: NSDI. 2015.

[13] N. Foster et al. “Frenetic: A Network Programming
Language”. In: ICFP. 2011.

[14] L. Gao and J. Rexford. “Stable Internet Routing With-
out Global Coordination”. In: SIGMETRICS. 2000.

[15] S. Goldberg. “Why Is It Taking So Long to Secure
Internet Routing?” In: Queue (2014).

[16] S. Graf and H. Saïdi. “Construction of Abstract State
Graphs with PVS”. In: CAV. 1997.

[17] A. Guha, M. Reitblatt, and N. Foster. “Machine-verified
Network Controllers”. In: PLDI. 2013.

[18] International Telecommunication Union Statistics.
2014.

[19] Internet2 Configurations. http://vn.grnoc.iu.edu/Internet2/
configs/configs.html.

[20] Internet2 Fees. http : / / www. internet2 . edu / about - us /
membership/.

[21] M. Jose and R. Majumdar. “Bug-Assist: assisting fault
localization in ANSI-C programs”. In: CAV. 2011.

[22] Junos OS: Routing Policies, Firewall Filters, and Traffic
Policers Feature Guide for Routing Devices. 2016.

[23] P. Kazemian, G. Varghese, and N. McKeown. “Header
Space Analysis: Static Checking for Networks”. In:
Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation. 2012.

[24] A. S. Koksal et al. “Synthesis of Biological Models
from Mutation Experiments”. In: POPL. 2013.

[25] K. R. M. Leino. “Dafny: An Automatic Program Veri-
fier for Functional Correctness”. In: LPAR. 2010.

[26] K. R. M. Leino. This is Boogie 2. Tech. rep. 2008.
[27] D. Madory. Chinese Routing Errors Redirect Russian

Traffic. http://research.dyn.com/2014/11/chinese-routing-
errors-redirect-russian-traffic/. 2014.

[28] D. McConnell. Chinese company ‘hijacked’ U.S. web
traffic. http: / /www.cnn.com/2010/US/11/17/websites .
chinese.servers/. 2010.

[29] D. Meyer, J. Schmitz, and C. Alaettinoglu. Application
of Routing Policy Specification Language (RPSL) on
the Internet. 1997.

[30] C. Monsanto et al. “A Compiler and Run-time System
for Network Programming Languages”. In: POPL.
2012.

[31] B. Quoitin and S. Uhlig. “Modeling the Routing of an
Autonomous System with C-BGP”. In: IEEE Network
(2005).

[32] Y. Rekhter, T. Li, and S. Hares. A Border Gateway
Protocol 4 (BGP-4). RFC 4271. 2006.

[33] L. Schaefer. Deutsche Telekom: ’Internet data made
in Germany should stay in Germany’. http://www.dw.
com/en/deutsche-telekom-internet-data-made-in-germany-
should-stay-in-germany/a-17165891. 2013.

[34] Selfnet. https://selfnet.de/.
[35] D. Slane. 2010 Report to Congress of the U.S.–China

Economic and Security Review Commission. 2010.
[36] A. Solar-Lezama et al. “Combinatorial Sketching for

Finite Programs”. In: ASPLOS. 2006.
[37] P. Suter, A. S. Köksal, and V. Kuncak. “Satisfiability

modulo recursive programs”. In: SAS. 2011.
[38] E. Torlak and R. Bodik. “A Lightweight Symbolic

Virtual Machine for Solver-aided Host Languages”. In:
PLDI. 2014.

[39] E. Torlak and R. Bodik. “Growing Solver-aided Lan-
guages with Rosette”. In: Onward! 2013.

[40] D. Turner et al. “California Fault Lines: Understand-
ing the Causes and Impact of Network Failures”. In:
SIGCOMM. 2010.

[41] K. Weitz et al. Bagpipe: Verified BGP Configuration
Checking. Tech. rep. 2016.

